

Path Planning Algorithm for a Robot in a Labyrinth
Milena Karova1, Ivaylo Penev2, Ventsislav Nikolov3 and Danislav Zhelyazkov4

Abstract – The paper presents an algorithm for path planning
for a robot in a labyrinth. The algorithm uses an image, obtained
by a camera. The image is processed and converted to a matrix,
presenting the labyrinth with obstacles and walls. Afterwards an
algorithm, based on the Dijkstra’s algorithm, is applied to find
the shortest path in the labyrinth. As opposed to the classical
Dijkstra’s algorithm, the presented algorithm compares the size
of the robot to the size of an obstacle. The implementation of the
algorithm is described and the obtained results are presented.

Keywords – Path planning, Robot, Labyrinth, Dijkstra

algorithm, Wave moving process.

I. INTRODUCTION

In the past the orientation of a human which is in a new
unknown place has been difficult. That is why the researchers
have spent some time for walking, orientation and map
creating for the unknown areas. Thus the geographic maps
emerged to facilitate the orientation in unknown location.
Later the orbital satellites have been invented and used to take
pictures and automatically map the ground surface.

After the invention of computers, information technologies
and programming tools the humans are trying to make a
perfect electronic anthropoid called robot. Artificial
intelligence is intended to be introduced in it to make it like a
human. In order such intelligence to be qualitative and reliable
it should be able to produce at least some thinking operations
and, for example, orientation.

Many algorithms and methods have been studied for
planning path of robots [5]. Great attention has been given to
Genetic algorithms [2], A* algorithm [3], as well as other
naturally inspired optimization algorithms [4].

In most cases the map of the environment (with obstacles
and possible paths) is obtained through the sensors of the
robot [1]. This approach serves well for movement of robots
on terrestrial surfaces, but could be inapplicable if the robot’s
sensors could not be used or sensors usage is difficult. For
example this is the case with movement in air or underwater
areas.

This paper describes an application of a project in which a
robot, labyrinth and camera are used. The camera shots and
sends the pictures to the robot which is moving through the

labyrinth. If the labyrinth is changed the camera informs the
robot. Thus the following operations should be implemented:
analyzing of the labyrinth image, finding of the optimal path,
making of the path map, moving simulation. The main goal is
to find the shortest path in a labyrinth given by a picture. The
walls, obstructions, the robot and the exit of the labyrinth are
the input data and should be marked. The output of the system
is the labyrinth printed in a file and animated simulation of the
robot moving.

The application goes in processing mode when a picture is
selected.

II. PROCESSING MODE

A. Image processing and building of virtual labyrinth

A picture of the labyrinth is obtained by a camera, attached
to the robot. Additionally on the picture the initial position of
the robot is marked by a red square and the exit of the
labyrinth is marked by a green square (fig. 1).

Fig.1 Picture of a labyrinth

TABLE I
SYMBOL ACCORDING

RGB color meaning symbol

>200,>200,>200 light space ‘ ’
>200,<100,<100 nuance

red
start /

robot
‘*’

<100,>200,<100 nuance
green

end / exit ‘o’

other other obstacle /
wall

‘W’

In this stage every pixel of the image is analyzed and a map

is created as a two-dimensional array. Every pixel is
transformed to a symbol according to Table 1. The pixels’
coordinates correspond to the symbols positions in the map.

1Milena Karova is with the Department of Computer Science at
Technical University of Varna, Bulgaria, E-mail:mkarova@ieee.bg
2Ivaylo Penev is with the Department of Computer Science at Technical
University of Varna, Bulgaria, E-mail: ivailo.penev@tu-varna.bg
3Ventsislav Nikolov is with the Department of Computer Science at
Technical University of Varna, Bulgaria, E-mail: v.nikolov@tu-
varna.bg
4Danislav Zhelyazkov is a student at the Department of Computer
Science at Technical University of Varna, Bulgaria, E-mail:
d.zhelyazkov.7331@gmail.com

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

228

When green or red pixel occurred some additional
computations are made to find the minimal and maximal
values of coordinates of the robot position and the labyrinth
exit, i.e.:
(Xrmin, Yrmin : Xrmax, Yrmax);(Xemin, Yemin : Xemax, Yemax).

The width of the exit and robot are also calculated:

k=max((Xrmax-Xrmin),(Yrmax-Yrmin),(Xemax-Xemin),(Yemax-Yemin)).

B. Optimal path in the virtual labyrinth

Thus the algorithm guarantees that the robot will go
through wide enough paths.

The previous data is integrated within the programming
model of the labyrinth. It is presented as a global object,
called data transfer object (DTO), accessible from any other
part of the application including all interface implementations.
This global object is a pure data object without any
functionalities and it is able to self-validate and convert itself
to plain text. The validation aims to refuse invalid or incorrect
pictures.

The virtual labyrinth can be constructed either by analyzing
a picture or by a scanning stream. The virtual labyrinth after
its processing is shown in Fig.2.

Fig.2 Virtual labyrinth shown as specially ordered symbols

III. FINDING THE OPTIMAL PATH IN THE

LABYRINTH

This is the main step in the application logic. Finding the
path is based on the well-known Dijkstra algorithm. The
difference is, that the presented algorithm compares the size
of the robot with the size of an obstacle.

A wave starting from the end of the labyrinth is observed as
a final unit that is moving from one point to a next neighbor
point. The wave gradually marks all points (units) directed to
the final point – Fig.3. This idea is further developed in the
application and is called Gasolisation. The difference is that in

our case the robot, respectively the final, are with different
width compared to the width of the walls and paths. The
marking points are replaced with marking lines (sequences of
points) with length k. The current traversing line in fact does
not search neighbor points but the whole neighbor lines. If the
robot is found the main wave stops it’s spreading and a new
small wave starts to spread trying to mark the robot. If this
does not succeed then this means that the area locating the
robot is too narrow and then the small wave stops and the
main wave continues. Otherwise if the robot is successfully
marked the algorithm is completed. If the main wave cannot
continue, because the all lines are marked, then an exception
is thrown saying that a path is not found. The algorithm works
on the characters file, that represents the virtual labyrinth, and
the marking is done by using the symbols ‘^’, ‘>’, ‘v’ and ‘<’.
The robot follows these symbols to move to the exit, i.e. the
symbols mark the back trace for the robot.

Fig. 3 The wave moving

The algorithm consists of the following basic steps:

• Creation of a queue – a set of points;
• Extraction of elements from the queue;
• For each point all neighbor points are checked. The

possible neighbors are in four directions – up, right,
down, left.

A neighbor point is free, if the following conditions are
satisfied:

- the point is not a part of an obstacle;
- the point is not marked.
A free point is marked and added to the queue.
All free points are marked by its neighbors. The order of

marking forms the shortest path.

The whole algorithm is as follows:

void FindPath(dot startDot, dot finalDot) {
Queue<dot> justAQueue;
justAQueue.Add(finalDot);
while (dot currentDot = justAQueue.Pop()) {
 Array<dot> neighbours = currentDot. GetNeighbours();
 foreach (dot neighbour in neighbours) {
 If(neighbor.isObstacle || neighbor.isMarked)
 next;
 currentDot.Mark(neighbor);
 if (neighbor == startDot)
 return;
 justAQueue.Add(neighbor);
 }
}

throw new NoPathFoundException();
}

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

229

IV. EXPERIMENTS - ANIMATION WITH SIMULATED

MOVING

The application prints as a text file the marked virtual
labyrinth. The file contains information for the size of the
labyrinth and the robot as well as the coordinates of the start
and end points. The walls and obstructions are shown as ‘W’
character, the path to the final is shown with the symbols ‘^’,
‘>’, ‘v’, ‘<’ and the final is shown as ‘o’. This file can be
exported and easily used by any other software application.

The application is implemented using the Java Swing
technology for user interfaces. When the process is completed
a maze monitor is shown as a panel in the main user window
sharing the virtual labyrinth. This monitor is responsible for
the reverse transformation of the characters map to a graphical
picture. A maze command executor is also used to move the
robot according to the markers over which it is currently
placed. If there are not markers in the robot position then this
means that the target is reached or there is no path in the
labyrinth. In these cases the robot cannot move any more. The
executor moves the robot by a timer until a situation with an
impossible move is reached (Fig. 4).

Fig. 4. Animated simulation of the robot movement

V. RESULTS

File with a model of the labyrinth with walls and obstacles
and the paths found is obtained as a result of the algorithm
(Fig. 5).

Fig. 5. Model of the labyrinth with found paths

The output file has the following structure:

• Numeric data about:
- size of the labyrinth;
- size of the robot and the exit of the labyrinth;
- coordinates of the start and the exit.

• Symbol map with the following data:
- walls and obstacles – symbol ‘w’ is used;
- path to the exit – symbols ‘^’ , ‘>’ , ‘v’ , ‘<’ are
used.
- exit – symbol ‘o’.

The output, shown on Fig. 5, presents:
• several thin slices;
• unsuccessful little wave;
• successful stop of the wave;
• several possible paths.

A file with this structure could be used by other
applications, using the same programming interfaces.

VI. CONCLUSION

For the present we consider significant application of the
presented algorithm in the field of technology education. The
algorithm has been implemented in a real robot platform (in
our case LEGO EV3 robot). This way we could demonstrated
to students fundamental concepts in computing and
automation: path-finding and search algorithms, robot
programming, device motion control, finite state machines,
others. Furthermore the algorithm is a suitable basis for
comparison of different path finding algorithms, for example
breadth-first and depth first search with A* algorithm.

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

230

One of the most important optimizations of the proposed
algorithm should be its parallel realization. This could also
make possible dynamic changes like manual choice of the
robot target and manual change of the labyrinth. Another
future task is implementation of another searching algorithm.

REFERENCES

[1] A. Rodic, Navigation, Motion Planning and Control of
Autonomous Wheeled Mobile Robots in Labyrinth Type
Scenarios", Volume 8, Number 2, Intelligent Service Robotic
Systems, IPSI Journal, Transactions on Internet Research, TIR,
ISSN 1820 - 4503, pp. 2-9, 2012.

[2] J. Su, J. Li, Path Planning for Mobile Robots Based on Genetic
Algorithms, Proceedings of Ninth International Conference on
Natural Computation (ICNC), ISBN: 978-1-4673-4714-3, pp.
723-727, 2013.

[3] N. Sariff, N. Buniyamin, An Overview of Autonomous Mobile
Robot Path Planning Algorithms, Proceedings of 4th Student
Conference on Research and Development, ISBN: 1-4244-
0527-0, pp. 183-188, 2006.

[4] S. Muldoon, L. Chaomin, F. Shen, H. Mo, Naturally Inspired
Optimization Algorithms as Applied to Mobile Robotic Path
Planning, IEEE Symposium on Swarm Intelligence, ISBN: 978-
1-4799-4458-3, pp. 1-6, 1994.

[5] http://www.redblobgames.com/pathfinding/a-
star/introduction.html

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

231

