

Modified Quiescence Procedure in Axon Chess Engine
Vladan Vučković 1

Abstract – This paper presents the modified Quiescence
algorithm. As the framework for this improvement basic
Quiescence procedure is defined. Some original modifications
and illustrative positions are presented in detail. All of these
theoretical results and novelties are successfully implemented
and verified in authors' chess applications Axon and Achilles.

Keywords – Theory of Logic Games; Computer Chess;
Algorithms; Search procedures.

I. INTRODUCTION

 Computer chess is one of the very important subject for
researching in the field of artificial intelligence. The large
amount of theoretical and practical algorithms and
applications are developed and proved their value in practice.
 The modern PC chess engines are reached the grandmaster
strength. There is a set of standard algorithms including Alfa-
Beta, Null Move, Transposition tables, Opening and Endgame
tablebases for constructing such a chess engines. Also, there
are many of other supporting algorithms responsible to
maximize the engine play strength. One of them is Quiescence
procedure.
 By definition, the evaluation function is applied to the
terminal nodes in the tree [1],[2]. Using algorithms to search
that contain implemented minimax procedure, the value is
prolonged in reverse direction through the tree to the root
node. Even in the earliest stages of computer chess
researchers observed a significant negative effect that may
occur in the final stage of evaluation nodes. This effect is
called horizon effect because of fatal errors that could be
generated trying to evaluate terminal dynamic positions. The
Quiescence procedure intends to solve that problem
introducing the extra tree selective searching in terminal
nodes, instead of simply to evaluate all of them. By removing
the horizon effect, the engines significantly increases their
strength [3],[4],[5].
 This paper has following structure. After Introduction, we
will define Quiescence procedure and present basic algorithm.
In the next section we will show the original improvement of
the function including a few support procedures. Tuning and
balance of these new procedures is very important, so we deal
with it in following of the paper. We will conclude the paper
with implementation of these novelties in stand-alone test
application and after that directly into the author's chess
engines Axon and Achilles.

II. QUIESCENCE PROCEDURE

 To illustrate the horizon effect problem we will first
postulate the basic variant of Quiescence procedure [6]. As an
example, let's try to evaluate the position given in the
following diagram (Figure 1):

Fig. 1. The diagram shows a dynamic position that has to be
evaluated.

 Applying static evaluator in this position, where the material
is completely identical for white and black, the evaluation
would be very close to draw. However, if we take into account
the dynamic parameters whether it is on the move white or
black, it is clear that the white pawn on E3 cannot be saved,
and that after the loss of that pawn, white will be forced to
very difficult position: material evaluation is -1.00, black
receives strong defended free of promoters by E line, the
white pawn on F4 becomes very vulnerable. So, with the other
parameters of evaluation positions created after taking a white
piece could be freely approximated in interval -2.00 to -2.50 .
 It is clear that attempting to evaluate a position that is not a
clear static type led to significant errors, which could be
crucial for the final evaluation and selection of the best moves
[7]. In practical chess game, in every stage of the game,
different positions generate a large number of unstable,
dynamic position so that the application of the presented
algorithms by definition would not lead to the realization of
successful chess program. The solution for the horizon effect
problem is that we must use specific procedures instead of
pure evaluators to process the terminal nodes. These class of
procedure are Quiescence searchers. This algorithm is a
classic alpha-beta searcher with a slightly different logic to
find the best continuation.
 The procedure works as follows:
 - In each generated terminal node the Quiescence searcher
performs the evaluation [4]. If the evaluation value is greater
or equal of the input variable is BETA, immediately exits the
procedure. In each node, the heuristic generator determines
the list of moves that can improve the existing evaluation.

 1 Vladan Vuckovic is with Faculty of Electronic Engineering,
ul.Aleksandra Medvedeva 14, Niš, Serbia, E-mail:
vladan.vuckovic@elfak.ni.ac.rs
vladanvuckovic24@gmail.com

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

332

These are most often moves that are taking the opponent's
pieces (capture), some checks and promotions. Each of these
moves is considered calling recursively Quiescence
procedure. If the return value is greater than the variable
BETA exit then the process is repeated but with improved
value for ALFA. Because the moves in which take opposing
figures represent in most cases the source of instability
positions, their influence to these dynamic characteristics are
successfully resolved. If we are in a position with no sharp
bits from the group moves we mentioned, we directly do pure
evaluation. In this way, in each node, the side that has the
action provides the ability to maintain or improve its
evaluation. Final positions are evaluated by static evaluator. In
this way, this function overrides the horizon effect problem
with introducing additional heuristics, so level of the game
program improves significantly. Unfortunately, the
introduction of Quiescence procedure, which in each node
calls the dispute evaluative function, leads to a significant
decrease in the overall speed (PPS - position per second rate)
to the average level. It is necessary to very precisely adjust the
balance among the amount of knowledge, speed and number
of moves that are discussed in this procedure in order to reach
the best performance [5]. In the following listing, we represent
a basic form of Quiescence procedure:

procedure Quiescence (position, alpha, BETA):integer;

var …

 { Position – Current position }

 { Alpha – Upper limit }

 { BETA – Lower limit }

begin

 value:=evaluator(position) {Static evaluation }

 if (value >= BETA) then { If dynamic value is greater than

upper limit, exit }

 begin

 Quiescence:=BETA;

 exit;

 end;

 if (value > alpha) then alpha = value; { New value for alpha

variable }

 GenerateCaptures();

 while (CapturesLeft) do { Generate search branch for

every element of list }

 begin

 GenerateNextCapture;

 value := -Quiescence(-BETA, -alpha); { Quiescence

procedure recursive call }

 UnmakeMove;

 if (val >= BETA) then begin Quiescence:=BETA; exit; end;

{ Exit }

 if (val > alpha) then alpha = value;

 end;
 Quiescence:=alpha;

 end;

 Displayed procedure only considers the actions that take
other figures (captures). Significant favorable factor in
Quiescence procedure that considers only exchange pieces is
auto-regulation of combinatorial explosion. Specifically, any
recapture reduces the number of pieces on the board for one.
After a series of piece recaptures, positions derives to a quasi-
static position where there is no more active exchange of
figures, and over which the procedure can be applied static
evaluator.

III. MODIFIED QUIESCENCE PROCEDURE

 However, it is important to consider this procedure and
extensions in which one party in chess, as in many variants
comes to mate [3]. The procedure considers the checks
incurred after taking some figures and reveals mates shown in
the following listing:

procedure QuiescenceCheck (position, alpha, BETA):integer;

var …

 { Position – Current position }

 { Alpha – Upper limit }

 { BETA – Lower limit }

begin

 if (NodeIsInCheck) then { If terminal node king is in check

… }

 begin

 Quiescence:=Quiescence(1, alpha, BETA);

 exit;

 end;

 if (value >= BETA) then { If dynamic value is greater than

upper limit, exit }

 begin

 NULLMOVE:=BETA;

 exit;

 end;

 if (value > alpha) then alpha = value; { New value for

alpha variable }

 GenerateCaptures();

 while (CapturesLeft) do { Generate a branch for every

element in a list }

 begin

 GenerateNextCapture;

 value := -QuiescenceCheck(-BETA, -alpha);{

QuiescenceCheck procedure recursive check }

 UnmakeMove;

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

333

 if (val >= BETA) then begin QuiescenceCheck:=BETA; exit;

end; { Exit }

 if (val > alpha) then alpha = value;

 end;

 QuiescenceCheck:=alpha;

 end;

 So it is the modified form of QuiescenceCheck recursive
procedure. According to many authors, with the
implementation of the checks in Quiescence procedure should
be very careful, because a large percentage of a completely
useless moves, which cannot improve evaluation leading to a
significant increase in the number of processed nodes.

IV. MVV/LVA AND SEE PROCEDURES

 A very important issue that must be addressed is how to sort
the list of moves that need to be processed at each node. The
two main techniques used are: MVV/LVA (Most Valuable
Victim/Least Valuable Attacker) and SEE (Static Exchange
Evaluation). Both of these two procedure have found their
place in modified Quiescence procedure [8]. MVV/LVA
technique is used for brief screening of list moves toward the
expected material gain. It will always move that takes the
opponent queen that has a higher value of the moves that takes
the opposing pawn. In the event that there are more pieces that
can take the same opponent piece, the first deals with the
suffix that means minimal material costs.
 For example, if we have a move PxQ (Pawn takes Queen) it
will be in the list moves ahead moves QxQ (Queen takes a
Queen). This technique does not take into account the fact that
the opponent's pieces can be defended but is easily deployed
and working very quickly.
 As an illustration, we present an example of forming a list of
moves in the position on the diagram using the second
MVV/LVA techniques.

Fig. 2. The sequence of moves using the MVV/LVA procedure.

The sequence of moves is: (QxQ, PxN, NxN, RxP).

SEE technique is more complex than MVV/LVA and involves
predicting the outcome of a series of trade figures. The
procedure approximates the result of a series of amendments
figure without having to call Quiescence procedures. Unlike
the previously exposed techniques, if the opposing figure that
is taken, defended by some other opponents figures, this fact
is taken into account.
 On the way to the much more realistically predicts the
outcome of a series of trade figures and thus significantly
improves the sequence of moves that are under consideration.
Figure 2 shows the identical position to that of Figure 3, but is
now used in processing SEE instead of MVV/LVA
techniques:

Fig. 3. The sequence of moves using the SEE technique.

 The sequence of moves using the SEE techniques is slightly
different: (PxN, RxP, QxQ, NxN). The sequence of moves
that generates and order processing sub-tree is different in
relation to the MVV/LVA technique. Bearing in mind the
anticipated losses on each side, sort of moves is with much
higher quality in the later stage generates a significantly
higher number of cutting trees in Quiescence procedure.
 In some older programs, SEE is used to approximate the
dynamic evaluation of the terminal nodes of Quiescence
without calling procedure, but in later versions of this it was
changed in the way to eliminate too much of the tactical
oversights. On the other hand, SEE procedure is considerably
slower than the MVV/LVA procedure which reflects the
overall NPS (node per second) feature of the program.
However, in most modern programs including Axon [9], we
use almost exclusively SEE.

V. APPLICATION AND TESTING OF THE QUIESCENCE

PROCEDURE

 After begin development of the new 32 bit version of the
Axon chess engine, the author was faced with the problem of
efficient development and testing of Quiescence procedure in
the independent application [10].
 This application is only for research purpose, it is open and
intended only for the construction of some key procedures of
the program [11]. Graphical environment for testing these
functions is shown in Figure 4:

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

334

Fig. 4. Graphical environment of the program for testing of the
Quiescence function.

 The graphical environment contains all the necessary
functions that are used for development of the Quiescence
function. In addition to the standard options for creating and
storing of the position, in relation to the visual display,
various parameters and arguments and special options are
embedded [12]. There is automatic test of the Quiescence
function based on the random assignment of a set of N pieces
on the chessboard, taking into account the legality of the
position. Testing positions on various parameters including
the symmetry is very fast, which significantly simplifies the
programmer implementation and change certain aspects of the
Quiescence function, that is necessary in a dynamic phase of
development applications.
 Connection to the main application is very simple and is
done via UNIT common files used by the main application.
After translation to machine language, the application
automaticly create ENGINE.DCU file that contains all of the
relevant data structures, procedures and functions for the
realization of the chess machine [13].
 At the stage of compilation of the basic program, Axon II
simply lists used directive states in engine. dcu unit, so the
connection is made in a very efficient manner. Control of
individual processes in the unit ENGINE.DCU is done
through a series of linked procedures. Every upgraded version
of application then use new reference in ENGINE.DCU
simply generating the new version of Quiescence function
[14].

VI. CONCLUSION

 This paper presents some original improvements embedded
into the basic general Quiescence procedure with direct
implementation in author's computer chess program Axon.
Modified procedure with some extra procedures added
(MVV/LVA,SEE) improved basic function and increase the
total playing strength of the chess engine.
 There are many possible tuning of these procedures. We will
concentrate our algorithm to optimal solution balancing

between efficiency and complexity needed for master
computer chess game.
 This solution has been already proved in direct
implementation in Axon's tournament practice. Also, all other
improvements will be checked in this way. The future
prospect will be to increase amount of embedded chess
knowledge into the Quiescence/Evaluation procedure using
the constant rise of CPU processing power.

ACKNOWLEDGEMENT

This paper is supported by the interdisciplinary project
III44006 of the Ministry of Science and Technology of
Republic of Serbia.

REFERENCES

[1] Althöfer, I., Sören W. Perrey: Mathematische Methoden der
Künstlichen Intelligenz: zur Quiescence-Suche in Spielbäumen.
ICCA Journal, Vol. 14, No. 2, p. 84. ISSN 0920-234X, 1991.

[2] Beal, D. F. A Generalized Quiescence Search Algorithm.
Artificial Intelligence, Vol. 43, No. 1, pp. 85-98. ISSN 0004-
3702, 1990.

[3] Beal, D. F. Mating Sequences in the Quiescence Search. ICCA
Journal, Vol. 7, No. 3, pp. 133-137. ISSN 0920-234X, 1984.

[4] Kaindl, H. Dynamic Control of the Quiescence Search in
Computer Chess. Cybernetics and Systems Research (ed. R.
Trappl), pp. 973-977. North-Holland, Amsterdam, 1982.

[5] Schrüfer, G. A Strategic Quiescence Search. ICCA Journal, Vol.
12, No. 1, pp. 3-9. ISSN 0920-234X, 1989.

[6] Slate D. J. , Atkin. L. R. CHESS 4. 5 – “The Northwestern
University Chess Program”, Chess Skill in Man and Machine (ed.
P. W. Frey), pp. 82-118. Springer-Verlag, New York, N. Y. 2nd
ed. 1983. ISBN 0-387-90815-3. , 1977.

[7] Vučković, V. , Vidanović, Đ. "An Algorithm for the Detection
of Move Repetition Without the use of Hash-Keys", Yugoslav
Journal of Operations Research (YUJOR), Volume 17, Number
2, pp. 257- 274. Belgrade, Serbia. ISSN 0354-0243. , 2007.

[8] Vučković, V. “The Theoretical and Practical Application of the
Advanced Chess Algorithms”, PhD Theses, The Faculty of
Electronic Engineering, The University of Nis, Serbia, 2006.

[9] Vučković, V. xon/Achilles experimental chess engines
information could be find at: http://axon. elfak. ni. ac. rs ,
http://chess. elfak. ni. ac. rs, 2007.

[10] Vučković, V. , "The Compact Chessboard Representation",
ICGA Journal, Volume31, Number 3, Tilburg, The Netherlands,
ISSN 1389-6911. pp. 157- 164., 2008.

[11] Vučković, V. , "The Method of the Chess Search Algorithms
Parallelization using Two-Processor Distributed System", The
Scientific Journal Facta Universitatis, Series Mathematics and
Informatics, Volume 22, Number 2, Niš , ISSN 0352-9665. pp.
175-188., 2007.

[12] Šolak, R. , and Šolak, Vučković, V. , "Time Management
During a Chess Game", ICGA Journal, Volume 32, Number 4,
Tilburg, The Netherlands, ISSN 1389-6911. pp. 206- 220., 2010.

[13] Vučković, V., “Advanced Chess Algorithms and Systems“,
monography, Zadužbina Andrejević, Biblioteka Dissertatio,
ISSN 0354-7671, Belgrade, 2011

[14] Владан Вучковић, “Специјални елементи евалуационе
функције”, Зборник радова са 53. Конференције ЕТРАН-а,
CD ROM Proceedings, Секција Вештачка интелигенција, рад
VI1. 3, Vrnjačka Banja, (ISBN 978-86-80509-64-8), 2009.

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

335

