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Abstract – In this paper, capacitance per unit length of 

rectangular coaxial transmission lines with offset nonzero-

thickness inner conductor, having an isotropic and anisotropic 

dielectric, using strong FEM formulation is calculated. The 

results were compared with the results obtained by the weak 

FEM and commercial software FEMM, which uses node-based 

first-order basis function. Based on that, appropriate conclusions 

are made. 
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I. INTRODUCTION 

Problem of capacitance per unit length of square or 

rectangular lines calculation, especially lines with offset inner 

conductor is topical in theory and practice. The paper [1] 

gives a review of the literature, dealing with this task and it 

performs the calculation of capacitance of the rectangular 

coax line with offset inner conductor by using the weak FEM 

formulation [2]. This paper deals with calculation of 

capacitance per unit length of square and rectangular coaxial 

lines filled with isotropic and anisotropic dielectric by using 

strong FEM formulation [3-6]. The results are compared with 

those obtained by weak FEM [1] and by commercial software 

FEMM [6]. FEM is a very suitable method for the analysis of 

closed polygonal structures and it can be simply used for 

analysis of geometries with anisotropic dielectrics, unlike the 

methods that use Green’s function (e.g., MoM or EEM) for 

which an additional complicated step of  anisotropic Green’s 

function determination is needed [7]. Besides classifying FEM 

into strong and weak formulation, this method can be 

classified as a node-based  [1,6,8,9] and non node-based (with 

hierarchical basis functions) [2-5, 10-12]. Node-based FEM 

can be found much more often than non node-based FEM. 

However, weak FEM formulation is usually presented in the 

literature, while strong formulation can rarely be found. In 

weak FEM formulation, only function’s continuity condition 

is exactly satisfied, whereas in strong FEM formulation, 

boundary conditions for the both function and its first 

derivative are satisfied exactly [2-5,10-12]. In this paper are 

obtained for the third order basis functions ( 3n ).  

II. BRIEF DESCRIPTION OF THE STRONG FEM 

FORMULATION  

FEM approach in this paper is based on hierarchical strong 

basis functions of higher (arbitrary) order that are constructed 

by using mutual multiplication of 1D strong basis functions 

[13]. Consider a two-dimensional domain, uniform with 

respect to z-axis, Fig. 1, filled with linear inhomogeneous 

dielectric without free charges, in which the distribution of 

electrostatic potential, ( , )V x y , is the unknown function. Let 

the problem be of the closed type: on one part of the domain 

boundary ( 1C ), boundary conditions of the first kind (given 

V ), and on the rest of the boundary ( 2C ), boundary 

conditions of the second kind (given /V n  ), are imposed 

(Fig.1). (Boundary condition of the second kind here is 

equivalent to given /nD V n    .) Differential equation 

for ( , )V x y  can be defined with: 

div ( grad ) 0S S V  ,                      (1) 

In previous equation divS  and gradS  denote surface 

divergence and gradient, respectively. Calculation domain is 

divided into M  sub-domains (elements) in FEM solution of 

Eq. (1).  

Exact solution ( , )V x y  is expressed as a linear combination 

of basis functions with unknown coefficients, 
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Fig. 1. Two-dimensional calculation domain divided into elements. 

 

The system of linear algebraic equations for unknown 

coefficients is obtained by applying the weak Galerkin 

formulation [14, 15], and it is defined with: 

 

[ ][ ] [ ]ij j iK a G , , 1, ,i j N= ,                      (2) 

where  

  ε grad grad dij i j
S

K f f S  ,
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In previous equation with 0nD  is denoted a normal 

component of vector D  on the contour 2C , whereas i  and j  

represent global serial numbers of basis functions. 

Furthermore, S  represents the union of all the element’s 

surfaces, defined with 
1

M
e

e

S S
=

= . Next, rectangular elements 

of arbitrary order are utilized for strong formulation. Strong 

basis functions automatically satisfy continuity of potential V 

( 0C continuity) and continuity of nD  (generalized 1C  

continuity) on interelement boundaries ( intC in Fig..1). 

Complete set of strong basis functions for 2-D problems in 

homogeneous (isotropic or anisotropic) media is presented in 

[13].  Instead of for anisotropic dielectrics it should be used 

ε x y      in equation (3) . 

III. NUMERICAL EXAMPLES  

I. Square coaxial line with offset inner conductor 

For a square coaxial line with offset inner conductor, Fig. 2, 

for 4/ ab , results for normalized capacitance per unit 

length, '/ εC , are presented in Fig. 3. When the inner 

conductor is moved from the center and positioned closer to 

the outer conductor, the normalized capacitance increases. 

The results of '/ εC  in the case when 4/ ab  are compared 

with the corresponding results obtained by FEMM [6] and 

results obtained by weak FEM [1]. The results are shown in 

Fig. 3 and an excellent agreement can be observed. In this 

case, it is not possible to exploit symmetry for the problem 

solution. In all the cases the mesh that consists of 288 

rectangular elements is used for strong and weak FEM. This 

resulted in 1152 unknowns for strong FEM and 2448 

unknowns for weak FEM formulation. In order to obtain 

results of the similar accuracy by using FEMM software, the 

number of nodes (which is equal to the number of unknowns) 

was between 3980 and 4130 while the number of triangular 

mesh elements was between 7592 and 7830. 

 

 
Fig. 2. Square coaxial line with offset inner conductor. 

Coordinate origin is in the center of the outer conductor. 

 

 
Fig. 3. Ratio /'C  depending on ax /0 , where ay /0  is 

parameter, 4/ ab  and dielectric is isotropic. 

 

  

II. Rectangular coaxial line with offset inner conductor 

 

For rectangular coaxial line, Fig. 4, '/ εC  dependance of 

ax /0  is shown in Fig. 5. 

 
Fig. 4. Rectangular coaxial line with offset inner conductor 

 

 
Fig. 5. Ratio /'C  depending on ax /0 , where by /0  is a 

parameter, 2/ ba  and dielectric is isotropic, Fig. 4.  
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III. Rectangular coaxial line with offset inner conductor 

and multilayered dielectric 
 

Fig. 6 shows the structure with layered isotropic dielectric 

in which the inner conductor was moved in direction t.  

 

 
Fig. 6. Rectangular coaxial line with offset inner conductor and 

multilayer isotropic dielectric 

 

In Fig. 7 dependence of the normalized effective permittivity 

1/  e  on 21   for two different values of bt  for a square 

coaxial line from Fig.1 is shown, where 2/111  babaaa .  

 

 
Fig. 7. Normalized effective permittivity 1/  e  of a 

rectangular coaxial line with offset inner conductor and 

multilayered isotropic dielectric, Fig.6,  for two different values 

of ratio bt / . 

IV. Square coaxial line with offset inner conductor and 

anisotropic dielectric 

 

For a square coaxial line with offset inner conductor, Fig. 

1, for 4/ ab , filled with anisotropic dielectric Sapphire, 

where  yx  , results for relative permittivity re , are 

presented in Fig. 8, for the following cases: a) ,4.9x  

6.11y  and b) 4.9y 6.11, x . The required number 

of unknowns for strong FEM formulation is 1152  and for 

weak FEM formulation is 2448, whereas the number of 

rectangular elements is 288. On the other hand, FEMM 

requires the number of unknowns between 3964 and 4088, 

whereas the number of triangular elements is between 7559 

and 7804. From Fig. 8 both effects of the proximity and 

anisotropy can be noticed, as described in detail in [2, 4, 5]. 

Moreover, an excellent agreement with FEMM results can be 

noticed, which proves that the strong FEM can be 

successfully applied for an accurate and efficient calculation 

of rectangular coaxial line with offset anisotropic dielectric.  

Fig. 8. Effective relative permittivity re ,  of a rectangular coaxial 

line with offset inner conductor and anisotropic dielectric Sapphire, 

Fig. 2,   for different ratios ay /0 . 

 

CONCLUSION 

Based on numerical examples shown in section III it can 

be concluded that the strong FEM formulation of the higher 

order and hierarchical basis functions can successfully be 

applied for accurate and efficient analysis of transmission 

lines with offset inner conductor of finite thickness in the case 

of isotropic and anisotropic dielectrics. Excellent agreement 

of obtained results and those obtained by weak FEM and 

commercial software FEMM has been observed. The 

advantage of strong FEM formulation compared to weak FEM 

is approximately one half of the number of unknowns. The 

advantage of both strong and weak FEM,  is  more than 25 

times smaller number of required finite elements with respect 

to FEMM.  
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