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Abstract  – Connectivity  related  problems  in  wireless  sensor
networks are an active area of research. A common requirement
in  connectivity  management  is  the  utilization of  a  robust  and
scalable  unsupervised  learning  method.  In  this  paper  an
isomorphism of a specially defined hypergraph is used to derive
a clustering method. The proposed method builds chordal graph
and estimates their chromatic polynomial.
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I.INTRODUCTION

One of the simplest and most basic of tasks in a Wireless
Sensor  Network  (WSN)  is  the  procedure  of  neighbour
discovery. It  allows a given node to choose upon all of the
nodes  that  it  could  possibly  reach,  through  its  neighbours.
Reachability, in turn, is directly related to routing, which is a
NP-problem in  general.  Since,  the  network’s  time  dynamic
state  is  not  changing  completely  at  random,  then  a  node
discovery  procedure  should  use  an  unsupervised  clustering
method. Currently, there are a lot of available clustering tools
in  the  literature  [1].  The  most  commonly  used  clustering
algorithms are k-Nearest Neighbour and K-Means. Both can
scale well with appropriate approximations, but unfortunately,
they  perform  badly  in  higher  dimensions  as  the  distance
between data points becomes uninformative. One way to go
about this problem is to try to use appropriate projections in
lower dimensions and then, use the modes of the projections
to make inferences about the clusters [2]. An alternative to this
is to represent the data set as vertexes of a hyper-graph and
then, to try to find such a hyper-edge that maximizes a criteria
for a subset of vertexes to belong to a cluster. An example of
this is given in [3]. In general, clustering problems are well
defined in the scope of  hyper-graph theory [4].  A common
problem of  most  clustering  algorithms,  which  utilize  some
kind of distance such as an Euclidean norm, is that the number
of  clusters  and  the  termination  conditions  are  hard  to  be
determined.  Hence,  it  is  possible to have empty clusters  or
clusters  that  have  a  number  of  clusters  within  themselves.
Moreover, these algorithms are very sensitive to the scaling of
the data that will artificially make certain clusters more or less
separable.

Furthermore,  in  the  case  of  connection  evaluation  the
clusters  are  also  time  dependent.  Hence,  the  system  can't
spend much resources on cluster estimation, if they are going
to loose their relevance in a short period of time. Hence, the
model  needs  some time dependent  predicting  power  of  the
network structure.

The  most  common  approach  to  these  issues  is  to  use
biologically inspired methods like Genetic Algorithms (GA)
[5], Evolutionary Algorithms (EA) [6], Ant Colony (AC) [7]
or  others  like  in  [8].  Probably  the  most  used  algorithm is
Particle  Swarm  Optimisation  (PSO)  [9]–[12]  and  its  many
variants. In this paper we take a different approach. We define
the problem in a hyper-graph theory framework similar to that
in  [13],  which  then  after  a  number  of  appropriate
transformations  are  made  will  result  in  a  heuristic  cost
function for the cluster of close neighbours  with respect to a
single node.  

The rest  of  the paper is  organized  as follows:  Section II
derives  the  heuristic  cost  function;  Section  III  explains  the
data  set  obtained  from  the  simulation  and  the  respective
results; Section IV presents some concluding remarks.

II. INDEX INVARIANCE

   Let us define the hyper graph  with vertex

set  and hyper-edge set  , where the degrees of the

hyper-edges   are arbitrary.  An example of such a

graph is given in Fig. 1. For each vertex  there exists a
node   in  the  network.  We  assume  that  two  sensors  are

neighbors and constitute a hyper-edge  of degree two, if
they are pairwise in each other’s range of coverage. 

    When the vertex  makes a first time connection to a set

of vertexes , it makes no a priori difference between the
labels of the vertexes as long as they are different.  For that
reason, let us define the notion of index invariance. 

  A  hyper-graph   with  vertex  set

 and  hyper-edge  set   is  index

invariant, if the incidence matrix   of the graph is upper
triangular  and the elements of the vector of unique indexes

can  be  rearranged  in  an  arbitrary  way  ,

without this causing change in the graph  and this is given
in Eq. (1).

 An example of such hyper-graph Sσ is given in Fig 1.
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Theorem 2.1:  An Index Invariant Graph (IIG)  and its

dual graph   are isomorphic. An alternative statement is

that  the  transpose  matrix   of  the  matrix  induces

such a  graph  , that is isomorphic to .
   We  prove  the  theorem  by  induction  on  the  number  of
vertexes n. The theorem is true for n = 1, 2, 3, hence, assume
it is true for all graphs with no more that n vertexes. For the

induction step, we add one vertex  and one hyper-edge

 to  which results in  in Eq. (2).

 We transpose Eq. (2).  Since  is upper triangular, then

its transposed matrix  is lower triangular in Eq. (3).

We  assumed  by  the  induction  hypothesis,  that  all  matrices

with a size smaller or equal to n can be transformed

into upper triangular . Next, we note that     any

reordering in the columns and rows of  in Eq. (3),

does not change row  and column , neither  the

structure of the graph. We move the rows of  with

one position downwards, so that   goes in place of ,

 goes  in  place  of   and  likewise  for  each  row

 other than  . Next,  goes in place of

 which gives Eq. (4).

In Eq. (4) we swap row  and  , which yields Eq.
(5).

We  move  columns   with  one  rightwards,  so  that  

goes in place of  ,   goes in place of  and every

column other  than  with  one rightwards  .

Next,  goes in place of   . Finally, we swap columns

 and  which
gives Eq.(6).

Eq.  (6)  proves  the  theorem,  since  the  matrix  is  upper
triangular.

We can substitute in Eq. (1) to obtain Eq. (7)

A direct  consequence  of  Eq.  (7)  is  that  for  each  IIG there
exists exactly one dual, while the two of them are isomorphic
to  one  another.  Because  the  ordering  of  the  labels  of  the

vertexes of   and the ordering of the labels of the hyper-

edges  of  the  dual   are  the  same  and  are  of  no
consequence, then the two graphs are indistinguishable from

one another .

Fig. 1. An example of an index  invariant hypergraph.
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Let us examine the IIG  and one of its sub hypergraph

,  as  it  is  done  in  Fig.  2.  There  exist

 number  of  sub  graphs,  that  are
indistinguishable by Eq. (7). Therefore, we consider them as
one and the same graph leading to Eq. (8).

   We note at this point that the number of sub IIGs of size k

coincides with the chromatic polynomial of the

complete  graph   with  k vertexes  and  n colors.  Let  us
observe  Fig.  2  further  in  order  to  prove  that  the  IIG  is  a
special case of a complete graph. 

   A vertex that  is  not  in  must have a label  that  is

different than the labels of each vertex in . That is true

for all  and all k. If we build a 2-uniform graph 

having the same vertex set as  where two vertexes of

are neighbors if they have different labels, then we can
see  that  there  is  an  edge  of  degree  2  between  each  two

vertexes of  . This means that  is a complete graph
and an IIG is a special case of a complete graph.
   Therefore, Eq. (8) allows us to evaluate the index invariance

with the chromatic polynomial  [14] of the 2-
section graph (S)2 .

where  is the number of neighbors of the simplicial

vertex  in the simplicial decomposition σ and  is the
total number of vertexes having that number of neighbors in
the decomposition.
  Because  the  metric  grows  fast,  we  can  normalize  each
polynomial  with  its  minimum  value  and  further  take  the
logarithm. Let n be the number of vertexes in the tree, then we
write Eq.(10).

   Another consequence of Eq. (8) is that if two IIGs have a
common vertex, then they form an entire IIG, meaning that
two independent  IIGs  do  not  intersect.  The inverse  is  also
true. If two IIGs do not intersect, then they are independent.

III. SIMULATION AND RESULTS

   For the purposes of this study we view the network from the
perspective of a single initial node. In Fig. 3 it is shown as
follows: all nodes are marked as crosses and their coverage
range is given in blue; the initial node and its coverage range
in  green;  with  red  -  all  neighbouring  relations;  in  black  –
cover trees rooted at the initial node. 
  On  each  iteration,  the  coverage  of  each  sensor  changes,
which  changes  the  structure  of  the  graph,  which  in  turn
changes  the access  capabilities and resources.  On the other
hand, in each time interval requests enter the system. At each
time new nodes can become connected to the initial node and
in the same time some nodes might get disconnected as the
range  of  each  node  changes.  Naturally,  if  a  node  has  no
resources to accept packets or the path between the nodes gets
disconnected packets will be dropped. 
After  we  accumulate  data  on  the  network  structure   as  it
changes  in  time,  we  can  then  compute   each  structure's
corresponding heuristics. On Fig. 4 we  plot the metric in an
increasing  order and the packet loss rate that is measured for
that structure.
   The results show, that with the increase of the heuristics, the
probability of packet loss also rises. For instance, two hyper-
edges with indexes e1 = 12 and e1 = 19, have heuristics H1 =
0.56  and  H2  =  1.58  and  their  respective  packet  success
probability is P1 = 0.43 and P2 = 0.33. 
   It must be also noted, that the metric is  time slice specific,
while th change  in packet losses can be subject to differential
processes.
In  conclusion,  the  sensors  should  negotiate  a  maximum
acceptable value for the heuristics and participate only in such
hyper-edges that are bellow that value in order to minimise
their packet loss in the network.

Fig. 2. An example of a sub IIG.
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IV. CONCLUSION AND FUTURE WORK

   In this paper a method for evaluating the connectivity in a
wireless sensor network is proposed. In the future we need to
compare our results with different algorithms that  tackle the
same problem and also  we need  to  increase  the simulation
complexity  with  respect  to  the  sensor  behaviour   and
environment.
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Fig. 4. An example of a sub IIG.

Fig. 3.  A State of a WSN.
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