## <u>å icest 2016</u>

### Hybrid Environment Service Orchestration for Fog Computing

Stojan Kitanov<sup>1</sup> and Toni Janevski<sup>2</sup>

Abstract – Emerging applications in the context of the Internet of Everything (IoE) introduce real-time and low latency requirements that raise new challenges on the services being provided to the users. These demands can only be partially fulfilled by existing Cloud Computing solutions. A new paradigm called Fog Computing, or briefly Fog has emerged to meet these requirements. It extends Cloud Computing to the network edge, allowing a wider geographic coverage, low latency, load balancing and flexible mobility support, and showing as a promising solution within the IoE. However, several challenges arise when it comes to the provision of Fog services, including the need for supporting the orchestration within large scale and dynamic environments of complex and on-demand services, which should be capable of adapting at runtime in order to ensure resilience and trustworthiness. This paper evaluates a model of Hybrid Environment Service Orchestrator (HESO) for resilient and trustworthy Fog Computing services in terms of network latency. The results demonstrate that HESO model is well positioned for real time big data analytics, 5G network and IoT.

*Keywords* – Cloud, Cloud Computing, Fog, Fog Computing, Mobile Cloud, Mobile Cloud Computing.

#### I. INTRODUCTION

The future Internet of Services (IoSs) will become the linkage between extremely complex networked organizations telecoms, transportation, financial, health (e.g. and government services, commodities, etc.), that will provide the basic ICT infrastructure that supports the business processes and the activities of the whole society in general [1]. Frequently, these processes and activities will be supported by orchestrated cloud services, where a number of services work together to achieve a business objective. However, future Internet will exacerbate the need for improved OoS/OoE, supported by services that are orchestrated on-demand and are capable of adapt at runtime, depending on the contextual conditions, to allow reduced latency, high mobility, high scalability, and real time execution. The emerging wave of Internet of Things (IoTs) would require seamless mobility support and geo-distribution in addition to location awareness and low latency. These demands can be only partially fulfilled by existing cloud computing solutions [2].

A new paradigm called Fog Computing, or briefly Fog has emerged to meet these requirements [3]. Fog extends cloud computing and services to the edge of the network. It provides data, computing, storage, and application services to end-users

<sup>2</sup>Toni Janevski is with the Faculty of Electrical Engineering and Information Technologies at Ss Cyril and Methodius University of Skopje, Macedonia. E-mail: tonij@feit.ukim.edu.mk that can be hosted at the network edge or even end devices such as set-top-boxes or access points. The main features of Fog are its proximity to end-users, its dense geographical distribution, and its support for mobility. Fog will combine the study of mobile communications, micro-clouds, distributed systems, and consumer big data. It is a scenario where a huge sometimes heterogeneous (wireless and number of autonomous) ubiquitous and decentralized devices communicate and potentially cooperate among them and with the network to perform storage and processing tasks without the intervention of third parties [4]. These tasks support basic network functions or new services and applications that run in a sand-boxed environment. Users leasing part of their devices to host these services get incentives for doing so.

By deploying reserved compute and communication resources at the edge, Fog computing absorbs the intensive mobile traffic using local fast-rate connections and relieves the long back and forth data transmissions among cloud and mobile devices [5], [6]. This significantly reduces the service latency and improves the service quality perceived by mobile users and, more importantly, greatly saves both the bandwidth cost and energy consumptions inside the Internet backbone. Fog computing represents a scalable, sustainable and efficient solution to enable the convergence of cloud-based Internet and the mobile computing. Therefore Fog paradigm is well positioned for real time big data analytics, 5G network, and IoT.

The move from Cloud to Fog computing brings out several key challenges, including the need for supporting the ondemand orchestration and runtime adaptation of resilient and trustworthy Fog Services. This is essential for the success of the future Internet of Everything (IoE), which a clear evolution of the IoT [7].

This paper provides a model of Hybrid Environment Service Orchestrator (HESO) for resilient and trustworthy Fog Computing services. It is organized as follows. Section II provides an overview of Fog Computing. Section III proposes the HESO model for Fog Computing. Section IV evaluates the HESO model in terms of Round Trip Time (RTT) latency. Finally, Section V concludes the paper and provides future work research directions.

#### II. OVERVIEW OF FOG COMPUTING

An overview of three layered Fog Computing architecture is given in Fig. 1. The intermediate Fog layer consists of geodistributed intelligent Fog Computing servers which are deployed at the edge of networks, e.g., parks, bus terminals, shopping centers, etc. Each Fog server is a highly virtualized computing system and is equipped with the on-board large

<sup>&</sup>lt;sup>1</sup>Stojan Kitanov is with the Faculty of Information Systems Multimedia and Animation at University of Information Science and Technology "St. Paul the Apostle," of Ohrid, Macedonia. E-mail: stojan.kitanov@uist.edu.mk.

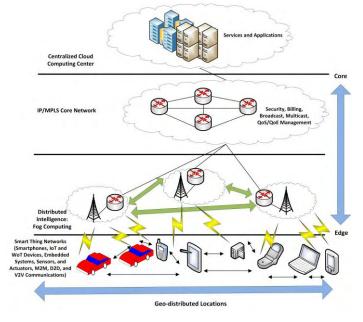



Fig. 1. Fog Computing Architecture

| TABLE I                            |
|------------------------------------|
| A COMPARISON BETWEEN FOG AND CLOUD |

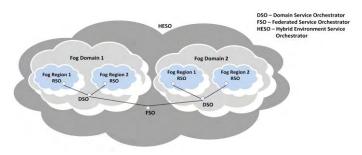
|             | Fog Computing          | Cloud              |  |  |
|-------------|------------------------|--------------------|--|--|
|             |                        | Computing          |  |  |
| Target Type | Mobile Users           | General Internet   |  |  |
|             |                        | Users              |  |  |
| Service     | Limited localized      | Global information |  |  |
| Туре        | information services   | collected from     |  |  |
|             | related to specific    | worldwide          |  |  |
|             | deployment locations   |                    |  |  |
| Hardware    | Limited storage,       | Ample and          |  |  |
|             | compute power and      | scalable storage   |  |  |
|             | wireless interface     | space and compute  |  |  |
|             |                        | power              |  |  |
| Distance to | In the physical        | Faraway from       |  |  |
| Users       | proximity and          | users and          |  |  |
|             | communicate through    | communicate        |  |  |
|             | single-hop wireless    | through IP         |  |  |
|             | connection             | networks           |  |  |
| Working     | Outdoor (streets,      | Warehouse-size     |  |  |
| Environment | parklands, etc.) or    | building with air  |  |  |
|             | indoor (restaurants,   | conditioning       |  |  |
|             | shopping malls, etc.)  | systems            |  |  |
| Deployment  | Centralized or         | Centralized and    |  |  |
|             | distributed in reginal | maintained by      |  |  |
|             | areas by local         | Amazon, Google,    |  |  |
|             | business (local        | etc.               |  |  |
|             | telecommunication      |                    |  |  |
|             | vendor, shopping       |                    |  |  |
|             | mall retailer, etc.)   |                    |  |  |

volume data storage, compute and wireless communication facility [5].

The role of Fog servers is to bridge the smart mobile device things and the cloud. Each smart thing device is attached to one of Fog servers that could be interconnected and each of them is linked to the cloud [6].

The geo-distributed intelligent Fog servers directly communicate with the mobile users through single-hop wireless connections using the off-the-shelf wireless interfaces, such as, LTE, WiFi, Bluetooth, etc. They can independently provide pre-defined service applications to mobile users without assistances from cloud or Internet. In addition, the Fog servers are connected to the cloud in order to leverage the rich functions and application tools of the cloud.

The existence of Fog will be enabled by the emerging trends on technology usage patterns on the one side, and the advances on enabling technologies on the other side. A comparison between Fog Computing and Cloud Computing is given in [5], and it is summarized in Table I.


The cloud in 5G network and beyond will be diffused among the client devices often with mobility too, i.e. the cloud will become fog. More and more virtual network functionality will be executed in a fog computing environment, and that will provide mobiquitous service to the users. This will enable new services paradigms such as Anything as a Service (AaaS) where devices, terminals, machines, and also smart things and robots will become innovative tools that will produce and use applications, services and data.

#### III. SERVICE ORCHESTRATION WITH FOG

The move from cloud to fog brings out several key challenges. This includes the need for supporting the ondemand orchestration and runtime adaptation of resilient and trustworthy fog Services, which is essential for the success of the future IoE, a clear evolution of the IoT.

Traditional service orchestration approaches that have been applied to Cloud services are not adequate to the forthcoming large-scale and dynamic Fog Services, since they cannot effectively cope with reduced latency, high mobility, high scalability, and real time execution. Therefore a new Hybrid Environment Services Orchestrator (HESO) is needed, that will be capable of ensuring the resilience and trustworthiness of open, large scale, dynamic services on the Fog. The Orchestrator will be responsible for the composition of Service Elements available in the Fog environment (e.g. sensing, connectivity, storage, processing, platform services, and software services) into more complex Fog Services (e.g. traffic crowd sensing and trip planning services) to be offered to the users in the Fog environment.

The execution of the Fog Services may involve multiple different components and entities spread in a wide area, increasing the complexity in terms of the decision making process in what regards the resource allocation to achieve acceptable QoS/QoE levels. To coordinate the execution of the Fog services, Orchestration mechanisms need to synchronize and combine the operation of the different service elements in order to meet the specifications of the composed Fog services, including low latency, scalability and resilience.



icest 2016

Fig. 2. Hybrid Environment Service Orchestrator Model for Fog Computing

The architectural levels of Fog orchestrated services and mechanisms are given in Fig. 2. The HESO in Fog should operate in a loosely coupled mode, resulting in a solution with several levels: Regional Service Orchestrator (RSO), Domain Service Orchestrator (DSO) and Federated Service Orchestrator (FSO).

The RSOs are located at the edges of the Fog environment and they enable semi-autonomous operation of the different Fog Regions. This allows the distribution of the load which provides scalability and a much higher proximity to the end users. Therefore lower latencies can be achieved.

The DSOs is responsible for the Fog domains and supervises the RSOs below. This level will support federation mechanisms to enable intra-domain cooperation between different regions within one domain.

The FSO allows a fruitful interaction between different Fog domains. It is responsible for the management between different Fog domains and, similarly to the DSOs, it should be properly adapted to operate in a federate Cloud environment. The FSOs will support federation mechanisms to enable cooperation among different Fog Domains (e.g. belonging to different entities or under the administration of different authorities) and the creation of a Multi-Domain Fog Environment able to support service ubiquity.

#### IV. EVALUATION OF THE HESO MODEL

The evaluation of the HESO will be explored in terms of the Round Trip Time (RTT) latency. RTT latency is the time it takes for a single data transaction to occur, meaning the time it takes for the packet of data to travel to and from the source to the destination, and back to the source [10]. In the real networks, latency is measured by performing ping tests, that uses ICMP packets. The total size of each ICMP packet is 74 bytes with the headers.

Let the mobile user be located in the Fog Region 1, which is controlled by the Fog Domain 1. And let Fog Domain 1 through a Federated Service Orchestrator be connected with Fog Domain 2. Fog Region 1 may correspond to an LTE/LTE-Advanced Cloud Radio Access Network (CRAN). Fog Domain 1 may correspond to a Cloud Computing Centre in the same region with the CRAN Network, and Fog Domain 2 may correspond to a Cloud Computing Centre in a different region with the CRAN network.

Let us assume the mobile user wants to upload and download some file for example a map, movie or similar, or wants to process some data. The RTT latency time required to perform this transaction is equal to:

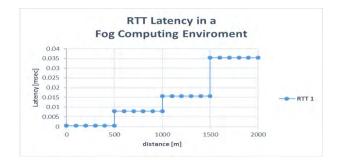
$$RTT = \frac{T}{R_{UL}} + \frac{T}{R_{DL}} + i_1 t_1 + i_2 t_2 \tag{1}$$

Here, T is the packet size travel from the source to the destination, and back to the source,  $R_{UL}$  and  $R_{DL}$  are the corresponding uplink and downlink data rates of LTE/LTE-A Network. The values of the uplink and downlink data rates [11] vary from the distance d between the mobile user and the CRAN network, and are summarized in Table II. The binary information coefficients  $i_1$  and  $i_2$  point the location of the data for which the end user is interested. Table III summarizes the possible location of the file, as well as the possible values of  $i_1$  and  $i_2$ . Finally  $t_1$  and  $t_2$  represent the time for the data file to be received by the Fog Region 1 (LTE Network) from Fog Domain 1 (Cloud Computing Center) or from the Fog Domain 2 (Cloud Computing Center), respectively.

TABLE II DATA RATES OF AN LTE-A/LTE NETWORK

| r             |             |                       |
|---------------|-------------|-----------------------|
| Maximum       | Maximum     | Distance between the  |
| Downlink Data | Uplink Data | End user and the      |
| Rate in Mbps  | Rate in     | LTE-A eNodeB in       |
| _             | Mbps        | meters                |
| 3000          | 1500        | d < 500               |
| 300           | 100         | $500 \le d < 1000$    |
| 150           | 50          | $1000 \le d \le 1500$ |
| 50            | 25          | $1500 \le d$          |

 TABLE III


 POSSIBLE VALUES FOR THE BINARY INFORMATION COEFFICIENTS

| Location of Data File | $\dot{i}_1$ | $i_2$ |
|-----------------------|-------------|-------|
| Fog Region 1          | 0           | 0     |
| Fog Domain 1          | 1           | 0     |
| Fog Domain 2          | 0           | 1     |

The simulation results are given in Fig. 3. The size of a data file is 74 MB, and the values of  $t_1$  and  $t_2$  correspond to 50 msec and 100 msec, respectively. Here RTT1 represent the network latency when data file requested by the mobile user is located in CRAN network (Fog Region 1). RTT2 represent the network latency when data file requested by the mobile user is located in the cloud computing center (Fog Domain 1), which is in the same region with the CRAN network. RTT3 represent the network latency when data file requested by the mobile user is located in the cloud computing center (Fog Domain 1), which is in the same region with the CRAN network. RTT3 represent the network latency when data file requested by the mobile user is located in the cloud computing center (Fog Domain 2) which is a different region with CRAN network.

Fig. 3a shows that the RTT latency increases as the mobile user moves away from the eNodeB of the CRAN network. Fig. 3b compares the RTT lantencies depending whether the data file requested by the mobile user is located in Fog Region

# <u>& ICEST 2016</u>





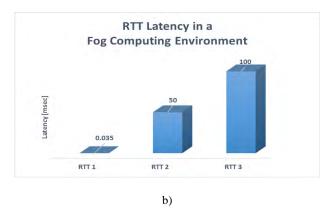



Fig. 3. RTT Latency in the Fog with a HESO Model

1, Fog Domain 1, or Fog Domain 2. The lowest network latency is obtained if the data file is located in the CRAN (Fog Region 1). The highest latency is obtained if the file requested by the user is located in the Fog Domain 2, i.e. in a cloud computing center which is in a different region with the CRAN network.

The results demonstrate that latency is significantly reduced from the order of miliseconds to the order of microseconds, which is very important for the delay sensitive applications.

#### V. CONCLUSION AND FUTURE WORK

The purpose of Fog computing is to place a handful of computing, storage and communication resources in the proximity of mobile users, and therefore to serve mobile users with the local short-distance high-rate connections. The move from cloud to fog brings out several key challenges, including the need for supporting the on-demand orchestration and runtime adaptation of resilient and trustworthy fog services, which is essential for the success of the future IoE, a clear evolution of the IoT. This could be solved by the proposed Hybrid Environment Service Orchestrator for resilient and trustworthy Fog Computing services.

The results demonstrate that the latency can be significantly reduced to the order of microseconds by using the HESO model for the Fog Computing, which is very important for the delay sensitive applications. Therefore HESO model with Fog Computing is well positioned for real time big data analytics, 5G network and IoT.

### 28 - 30 June 2016, Ohrid, Macedonia

Fog will act as a nervous system of the digital society, economy, and everyday people's life. Fog paradigm is well positioned for real time big data analytics, 5G network, and IoT. The cloud in 5G networks and beyond will be diffused among the client devices often with mobility too, i.e. the cloud will become fog. More and more virtual network functionality will be executed in a fog computing environment, and it will provide mobiquitous service to the users. This will enable new AaaS service paradigms, where devices, terminals, machines, and also smart things and robots will become innovative tools that will produce and use applications, services and data.

However there are also some aspects that should be addressed in order the Fog approach to be successful. This includes defining hybrid and heterogeneous environments, interaction and integration between the execution managements of each domain, and integration between managements inside one domain. In future we plan to work on solving some of these challenges.

#### REFERENCES

- [1] Horizon project: A New Horizon to the Internet, 2015 http://www.gta.ufrj.br/horizon/
- [2] S. Zhang, S. Zhang, X. Chen, X. Huo, "Cloud Computing Research and Development Trend," in Proceedings of the 2010 Second International Conference on Future Networks (ICFN '10). IEEE Computer Society, Washington, DC, USA, pp. 93-97, 2010.
- [3] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, "Fog Computing and its Role in the Internet of Things," in Proceedings of the first edition of the MCC workshop on Mobile Cloud Computing (MCC 2012), ISBN: 978-1-4503-1519-7, doi:10.1145/2342509.2342513, ACM, New York, NY, USA, pp. 13-16, 2012.
- [4] L. M. Vaquero, L. Rodero-Merino, "Finding your Way in the Fog: Towards a Comprehensive Definition of Fog Computing," ACM SIGCOMM Computer Communication Review, Vol. 44, No. 5, doi:10.1145/2677046.2677052, pp. 27-32, 2014.
- [5] H. T. Luan, L. Gao, Z. Li, L. X. Y. Sun, "Fog Computing: Focusing on Mobile Users at the Edge," arXiv:1502.01815[cs.NI], 2015.
- [6] I. Stojmenovic, S. Wen, "The Fog Computing Paradigm: Scenarios and Security Issues," in Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), ACSIS, Vol. 2, No. 5, doi:10.15439/2014F503, pp. 1-8, 2014.
- [7] B. Brech, J. Jamison, L. Shao, G. Wightwick, "The Interconnecting of Everything. IBM Redbook," 2013 http://www.redbooks.ibm.com/redpapers/pdfs/redp4975.pdf
- [8] G. Brown, "Converging Telecom and IT in the LTE RAN," White Paper at Heavy Reading on behalf of Samsung, 2013.
- [9] J. S. Stolfo, B. M. Salem, D. A. Keromytis, "Fog Computing: Mitigating Insider Data Theft Attacks in the Cloud," in Proceeding of IEEE Symposium on Security and Privacy Workshops (SPW), ISBN: 978-0-7695-4740-4, doi: 10.1109/SPW.2012.19. IEEE Computer Society, Washington, DC, USA, pp. 125-128, 2012.
- [10] "Latency Consideration in LTE Implications to Security Gateway," Stoke Inc. White Paper, Literature No. 130-0029-001, 2014.
- [11] A. Roessler, J. Schlienz, S. Merkel, M. Kottkamp, "LTE-Advanced (3GPP Rel. 12) Technology Introduction," Rhode and Schwarz White Paper 6.2014 – 1MA252 2E, 2014.