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Abstract – 2D localization of narrow-band electromagnetic 
source of stochastic radiation nature in far-field is considered in 
the paper. The model presented is based on artificial neural 
networks (ANN). This model is trained to perform accurate and 
efficient 2D direction of arrival (DoA) determination of 
electromagnetic signals radiated from some stochastic source, 
That changes its position in a parallel plane, to the level of a 2D 
antenna array, in the far-field scan area. This antenna array is 
used for sampling the spatial correlation matrix signal that 
provides the necessary information for the training model. 

Keywords – Source localization, Mobile users, Stochastic 
radiation, Correlation matrix, Neural networks. 

I. INTRODUCTION 

Spatial filtering of the antenna array signal and shaping the 
radiation characteristics, using adaptive antenna arrays, are  
now current techniques. They unveil the possibility to 
efficiently decrease the negative impact of interference, on the 
signal reception site, and therefore the possibility of a 
significant increase in the number of users of modern wireless 
communications as well as, the service quallity of services 
that such systems offer to the customers [1,2]. In parallel with 
the above fact, the techniques relating to the localization 
position of the source signal by the passive sensor array also 
attract the attention today because there is an increasing need 
for their application in geophysics, satellite communications, 
radio-astronomy, biomedical engineering, radar systems 
engineering 5G and other forms of wireless communication. 

In applying the above techniques of both classes, 
procedures have a very important role for DoA estimation of 
the signal. Today the most commonly used super-resolution 
algorithms for DoA estimation such as MUSIC [1,2] and its 
modifications have a high accuracy in determining the 
directions of where the EM signals come from, but because of 
its complex matrix calculation, it requires powerful hardware 
resources and are not suitable for operation in real time. In 
papers [3-11] is shown that the alternative methods DoA 
estimation algorithms can be super-resolution models based 
on artificial neural networks [3,12 to 13]. Neural models for 
DoA estimation avoid complex matrix calculations, and can 
have an approximate accuracy of the MUSIC algorithm. They 
are faster than the MUSIC algorithm which makes them more 
suitable choice for implementation in real time [3 to 4,11]. 

1Zoran Stanković and Nebojsa Dončov are with the Faculty of 
Electronic Engineering, University of Nis, Aleksandra Medvedeva 
14, 18000 Nis, Serbia, E-mail: [zoran.stankovic, nebojsa.doncov,] 
@elfak.ni.ac.rs 

2Ivan Milovanović and Bratislav Milovanović are with the 
Singidunum University,  centre Nis, Nikole Pašića 28, 18000 Niš E-
mail: [imilovaovic, bmilovanovic] @singidunum.ac.rs 

 

In the papers [4-5] su predstavljeni efficient neuron models 
are presented. For 1D DoA [4] and 2D DoA [5] estimation of 
deterministic radiation source. In papers [6-11] are presented 
neural models for 1D DoA estimation origin with the 
stochastic nature of EM radiation wave [14,15] where the 
stochastic sources moving along one direction in the 
azimuthal plane and where their positions are characterized by 
a single angular coordinate (azimuth ). 

This paper goes a step further in research in relation to the 
works [6-11] because it now allows the stochastic radiation 
source moving in 2D space (the plane), and its position is 
located using two angular spatial coordinates. These 
coordinates represent the angles of the spherical coordinate 
system under which the stochastic EM radiation sources 
comes to a rectangular planar antenna array, or in other words 
to the angles that are obtained using the method of 2D DoA 
estimation to the plane of the antenna array. A scenario is 
considered where a single source of stochastic radiation 
changes its position in the plane relative to the planar antenna 
array, which is located in the far zone of radiation and which 
is parallel to the plane of movement of the relative level of 
stochastic sources. This scenario, with certain approximations, 
and ignoring the effect of curvature of the earth's surface, can 
be present in passive radar and other sensors that are based on 
antenna arrays and mounted on satellites that are in low-earth 
orbit, planes or drones in order to make detection and 
localization of the source of radiation at the earth's surface. 

II. STOCHASTIC SOURCE RADIATION MODEL 

In this paper, a model of stochastic radiation source in a 
far zone which is also applied in the works [6-11]. With this 
model stochastic radiation sources in the far zone presents a 
linear uniform radiation of the N antenna array elements that 
are at the distance d (Figure 1). The degree of correlation 
between the supply current of the elements of an antenna 
array that is described buy the vector I=[I1, I2, …, IN]) is 
defined by the correlation matrix )(ωIc  [14,15]: 
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In the zone of far-field electric field strength at the selected 
sampling point is calculated in a way 
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where M represents the scaning with Green’s function 
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In the equations (2) and (3) θ and ϕ represent the spatial 
position of the corners of the first antenna element of the 
antenna array that represents the source in relation to the 
selected sampling point, F(θ,ϕ) is the radiation characteristic 
of the antenna element, rc the distance between the selected 
point from the center of the antenna array, z0 is the 
impedance of free space, k is the phase constant (k=2π/λ) 
while r1, r2, ... , rN represent the distance selected point from 
the first to the N-th antenna element respetivly (Fig. 1). 
When at the reception we use a planar antenna array 
rectangular dimensions M × P, sampling points will be in 
positions of planar antenna elements and a series of them 
will be K=M⋅P. In our scenario (Fig. 1) receiving planar 
antenna elements that represent a set of sampling points are 
arranged in x-y level which is pararalelna level where the 
generation source S relative moving relative to the receiving 
antenna array. The distance between the elements of the 
receiving antenna array along the x axis is s, while the 
distance between the elements along the y axis h. The 
distance between the level of the planar receiving antenna 
array and the plane in which the mobile generation source S 
is r0. Introduced the assumption that the linear antenna array, 
which is modeled stochastically source at the beginning of 
the movement oriented along the x axis and in d << r0 
ignored changes its orientation when moving sources. When 
copying (3) is applied to each sampling point individually, 
the appropriate distance between the n-th element of the 
antenna array that represents the stochastic radiation source 
S and the sampling point at the position sensor (m,p) of a 
planar  reciever array is 
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where r0 is the distance between the planes of the planary 
antenna array at the receving end, and the plane in which the 
stochastic source S is moving while θmp and ϕmp are spatial 
angles relating to the position of the first antenna element in 
relation to the source (m,p) sensor position and they are 
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whereby θ11 and ϕ11 spatial angles relating to the position of 
the first antenna element sources relative to a reference (1,1) 
position of the sensor. The angles θ11 and ϕ11 also represent 
the angular position (θ,ϕ) stochastic source S in relation to 
the linear receiving antenna array so that the θ11 = θ i ϕ11 = 
ϕ.  

Correlation matrix signal in the sampling points is defined 
like so 
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On the basis of the equations (4)-(6) is determined by the 
vector M is given in equation (3), then in accordance with 
the angular position of stochastic energy sources to the 
sampling point, the elements of the correlation matrix. If the 
array elements are normalized with respect to the first 
element of the matrix  
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in our scenario is obtained correlation matrix that does not 
depend on the value of r0 , rc , F(θ,ϕ) i N. For training the 
neural network of that model made enough to take only the 
first type of matrix CE ([CE11, CE12, … , CE1K]) because it 
turned out that the first type contains sufficient information 
to determine the angular position of the radiation source 
[5,6]. 

 
Figure 1. The position of stochastic source in x-y plane with respect 
to the location of EM field sampling points in the far-field scan area. 

III. NEURAL NETWORK MODEL 
The neural model based on MLP ANN [12,13] is 

developed with the purpose to perform the mapping from the 
space of signals described by correlation matrix CE to the 2D 
DoA space 

[ ] )( E
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where [θ ϕ]T is vector of spatial angles of arrival of the 
stochastic source radiation. The architecture of developed 
neural model is shown in Fig.2. Its MLP network can be 
described by the following function: 
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where yl-1 vector represents the output of (l-1)-th hidden 
layer, wl is a connection weight matrix among (l-1)-th and l-
th hidden layer neurons and bl is a vector containing biases 
of l-th hidden layer neurons. F is the activation function of 
neurons in hidden layers and in this case it is a hyperbolic 
tangent sigmoid transfer function: 

uu

uu

ee
eeuF −

−

+
−

=)(                              (11) 

In order to perform mapping it is sufficient to take only the 
first column of correlation matrix and therefore 
y0 = [Re{CE[1,1]},…, Re{CE[1,K]}, Im{CE[1,1},…, 
Im{CE[1,K]}]. Also, output of the neural network model is 
given as [θ ϕ]T = w3y2 where w3 is a connection weight 
matrix between neurons of last hidden layer and neurons in 
output layer. The optimization of weight matrices w1, w2, w3 
and biases values during the training allows ANN to 
approximate the mapping with the desired accuracy. 

 
Figure 2. Architecture of MLP neural model for 2D DOA 

estimation of stochastic EM source signal in x-y plane plane 

The general designation for this defined MLP neural model is 
MLPH-N1-…-Ni-…-NH where H is the total number of hidden 
layers used MLP network, while Ni is the total number of 
neurons in the ith hidden layer. 

IV. MODELING RESULTS 
Neural model with the architecture presented in the 

previous section modeled the hypothetical scenario of 
stochastic radiation source described in section II, where the 
stochastic source antenna represents a series of two elements 
with uncorrelated currents supply a sampling signal in a far 
zone is carried out in nine points that are distributed the 
equidistant spacing in the form of a rectangular planar set of 
dimensions 3 x 3. For the characteristic radiation element 
antenna array origin is taken isotropic characteristics. The 
feed currents of two elements are mutually uncorrelated so 
that cI is the unit diagonal matrix. Table 1 provides the 

values of parameters of the scenarios that were used to 
generate samples for training the neural models. For the 
realization of the training model used is the Matlab software 
development environment. Sets of samples for training and 
testing MLP models were generated by using equation (3) 
and (7). Any combination of angles θ and ϕ which is defined 
by the distribution patterns associated with the vector of 18 
elements, represents the first type of signal correlation 
matrix (9 elements for the real part , and 9 elements in the 
imaginary part of the complex value of the first type 
correlation matrix). 

TABLE I 
THE VALUES PARAMETERS WHICH USED IN SAMPLING PROCESS  

Frequency f = 22 
GHz 

Number of antenna array elements per one source N = 2 
Sampling points distance from source trajectory r0= 600 km 
Number of sampling points along x axis M = 3 
Mutual distance of the sampling points along x axis s = λ/2  
Number of sampling points along y axis P= 3 
Mutual distance of the sampling points along y axis h = λ/2  

TABLE II 
TESTING RESULTS FOR SIX MLP NEURAL MODELS WITH THE BEST 

AVERAGE ERRORS STATISTICS 

MLP model WCE [%] ACE [%] 

MLP2-15-11 2.52 0.38  

MLP2-12-12 2.74 0.39 

MLP2-18-14 2.78 0.38 

MLP4-13-13 2.79 0.37 

MLP2-20-10 2.80 0.38 

MLP2-18-7 2.79 0.38 

For the model training , a set of 14641 samples with 
uniform distribution θ and ϕ  angles in the range [-30° 30°] 
with a 0.5° step. Quazi-Newton method with prescribed 
accuracy of 10-4 is used as a training algorithm. For the 
testing of the model a set has been generated of 7396 
samples with uniform distribution θ and ϕ  angles in the 
range [-30° 30°] with a 0.7° step. The testing results for six 
MLP models with the lowest average (ACE) and worst case 
error (WCE) are shown in Table II, and MLP2-15-11 is 
chosen as representative neural model. The neural model 
scattering diagram of testing samples set shows a very good 
agreement between the output values of neural model and 
referent θ and ϕ values (Fig.3 and Fig.4). 

Using the MLP2-15-11 model a simulation has been conducted 
for tracking the movement of the hypothetic source of 
stohastic radiation on earth's surface in a square area in size 
800×800 km. The source has changed its position along the 
test trajectory, which has been set by the function y = 3⋅10-

6⋅(x-105)2-3⋅105 where x and y are relative latitude and 
longitude expressed in meters. Evaluation paths of origin 
was carried out by sampling time correlation matrix of the 
69 points shown in Figure 5. A satisfactory agreement can 
be observed between the values of the source positions 
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which war estimated by the neuron model and the referent 
source trajectory. 

 
Figure 3. Scattering diagram of MLP2-15-11 model θ output  

 
Figure 4. Scattering diagram of MLP2-15-11 model ϕ output 

 
Figure 5. A simulation of localization and tracking the 

movement of the hypothetic source of stochastic radiation on 
earth’s surface with the MLP2-15-11 model 

 

V. CONCLUSION 
Neural model ability to accurately and efficiently determine 

the 2D location of the stochastic source is illustrated on one 
example. As proposed neural model avoids intensive and 
time-consuming numerical calculations it is more suitable 
than conventional approaches for real-time applications. At 
the moment, neural model is capable to determine the 2D 
location in a plane for one stochastic source. Future research 
will be focused to the more general 2D DOA estimation of 
multiple stochastic sources. 
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