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Abstract – This paper investigates possibilities for application 
of Kernel based Extreme Learning Machines (K-ELM) to the 
problem of multiclass image classification. It is combined with 
Local Binary Pattern (LBP) image descriptor, to reach highly 
accurate results. LBP is widely used global image descriptor 
characterized by compactness and robustness to illumination and 
resolution changes. Classification is done using recently 
introduced K-ELM method. Experimental evaluation on a 
standard benchmark dataset consisting of thousand images 
classified in ten categories, has shown high accuracy of results 
comparing to other benchmark models. 
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I. INTRODUCTION 

Image classification based on visual content is a crucial 
problem in computer vision research. The goal of an image 
classification system is to assign a category label with the 
most similar visual content, to the given query image. Visual 
similarity between images is commonly measured using 
robust and compact image descriptors (features). 

There is a large set of visual descriptors available in the 
literature [1, 13]. The choice of the descriptor essentially 
affects the overall performance of the classification system. 
Local Binary Pattern (LBP) is one of the most widely used 
descriptor due to robustness to resolution and lighting 
changes, low computational complexity, and compact 
representation [2, 3, 4, 7]. The second crucial part of the 
system is machine learning technique to be applied for 
classification of descriptors. Support Vector Machine (SVM) 
is the most widely used machine learning technique for image 
classification purpose [5, 6].  

In this study we investigate application of Kernel based 
Extreme Learning Machines (K-ELM) [8, 9, 10, 11, 12] for 
image classification, as an alternative to the commonly used 
SVM technique. The training of the SVM is based on solving 

quadric programming problem, which is usually time 
consuming when the number of training examples is large. 
Beside that SVMs are originally proposed for binary 
classification, while for the multi-class classification one-
against-all (OAA) or one-against-one (OAO) approaches must 
be used in SVM implementation. On the other hand, K-ELM 
shows much better generalization performances for multiclass 
classification cases, and has better scalability and much faster 
training speed, compared with SVM [9]. 

In the rest of the paper we first give an overview of K-ELM 
classification method for multi-class image classification. 
Then we describe the process of LBP descriptor extraction. 
Finally, experimental evaluation and conclusion are presented.  

II. KERNEL BASED EXTREME LEARNING 
MACHINES (K-ELM) FOR MULTICLASS 

CLASSIFICATION 

Let us define N training examples as (xj, yj) where xj = [xj1, 
xj2, ...,  xjn]T ∊ Rn denotes j-th training instance of dimension n 
and yj = [yj1, yj2, ... , yjm]T ∊ Rm represents j-th training label of 
dimension m, where m is the number of classes. LBP image 
descriptor, which will be described in the next section, will 
further be denoted as xj. As yj, we will denote m dimensional 
vector of binary class labels with value “1” denoting 
membership to the class. SLFN with activation function h(x) 
and L hidden neurons could be defined as: 
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where wi = [wi1, wi2, ... , win]T denotes the vector of weights 
which connects the ith hidden neuron and all input neurons, βi 
= [βi1, βi2, ... , βim]T is the weight vector which connects ith 
hidden neuron and all output neurons, and bi is the bias of the 
ith hidden neuron. By ELM theory [8], wi and bi can be 
assigned in advance randomly and independently, without a 
priori knowledge of the input data. The ELM network 
structure is presented in Figure 1. 
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Fig. 1. Structure of an ELM network. 
 

The equivalent compact matrix form of (2) can be written 
as 

 =H Yβ  (3) 

where H in (3) represents the hidden layer output matrix of 
the neural network; the ith column of H represents the ith 
hidden neuron’s output vector in regard to inputs x1, x2, ..., xN.   
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Although the output weights can be analytically 
determined by finding the unique smallest norm least-squares 
solution of the linear system (3) in order to improve the 
performance the constrained optimization problem can be 
formed for ELM multiclass classifier with multiple outputs, as 
shown in [9]: 
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T

j j jmξ ξ⎡ ⎤ξ = ⎣ ⎦ is the training vector of the m 

output nodes with respect to the training sample xi, while C 
represents tradeoff parameter between model complexity and 

allowed errors jξ  during training. Based on Karush - Kuhn -
Tucker (KKT) theorem, the optimization problem defined in 
(6) is equivalent of solving the dual optimization problem: 
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where 1,...,
T

j j jmα α α⎡ ⎤= ⎣ ⎦ are Lagrange multipliers. 

After solving (7) based on KKT conditions, which can be 
found in detail in [9], the following solution is obtained: 
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and the decision function of ELM classifier is: 
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 If feature mapping h(x) is unknown, we can apply 
Mercer’s condition on ELM. We can define kernel matrix for 
ELM as: 
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 In KELM 
TT T

1( ) ( )H Nh h⎡ ⎤= ⎣ ⎦Kx x  represents 

hidden layer output matrix which maps data xi from the input 
space to the hidden layer feature space and it is irrelevant to 
target values yi and number of output nodes m. The kernel 
matrix THHELM =Ω is related only to input data xi and 
number of training samples N, for regression, binary 
classification and multi class classification. 
 Then, the output function of ELM classifier (9) can be 
written compactly as: 
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 In this case the feature mapping h(x) does not need to be 
defined by users, as well as the dimensionality of feature 
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space L (number of hidden nodes), just its kernel K(u,v). In 
our experiments RBF kernel is used, defined as: 
 2( , ) exp( )K γ= − −u v u v  (12) 

where γ  represents parameter of Gaussian kernel. It can be 
noted from (11) and (12) that optimal combination of 
parameters C and γ have to be obtained in order to achieve 
good generalization performance. 

III. LOCAL BINARY PATTERNS (LBP) 

Local Binary Pattern (LBP) is a popular image descriptor 
that captures local appearance around a pixel. LBP descriptor 
of the complete image is formed as a histogram of quantized 
LBP values computed for every pixel of the image.  It was 
introduced in [4] for the texture classification problem, and 
extended to general neighborhood sizes and rotation 
invariance in [2]. Since then, LBP has been extended and 
applied to variety of applications [3]. 

For a given image I, the local LBP descriptor centered on 
pixel I(x, y) is an array of 8 bits, with one bit encoding each of 
the pixels in the 3×3 neighborhood (Fig 2.). Each neighbor bit 
is set to 0 or 1, depending on whether the intensity of the 
corresponding pixel is greater than the intensity of the central 
pixel. To form the binary array, neighbors are scanned starting 
from the one to the right, at position I(x+1, y), in anti-
clockwise order. 

 
a) Pixel intensities b) Thresholded difference c) LBP 
167 221 221 
147 217 198 
132 230 212 

 

0 1 1 
0  0 
0 1 0 

01100010 

 
Fig. 2. Example of a LBP extraction process for central pixel of 

intensity 217. 
 

If 3×3 neighborhood is used, there are 256 possible basic 
LBP codes. Using an extension from [2], this can be further 
reduced into a smaller number of patterns (58), which forms 
in a rotation-invariant descriptor. The extension is inspired by 
the fact that some binary patterns occur more frequently than 
others. 

To describe the complete image, the quantized LBP 
patterns are grouped into histograms. The image could be 
divided into blocks, with a histogram computed for every 
block and concatenated to form the final descriptor. In our 
method we used only one image block, i.e. a global histogram 
is computed for the complete image. 

To include image details at multiple scales, we extracted 
LBP histograms over the original image and several times 
resized image. Resizing is done to the half width and height of 
the original image using bicubic interpolation method.  

Color image information is exploited by first converting an 
image into YCbCr color space and using all three color 
channels for LBP extraction. Final descriptor is formed by 
concatenation of the LBP histograms extracted at 3 scales 
(original + 2 downsampled) and 3 color channels. The 
computed image descriptor contains 3×3×58=522 dimensions. 

IV. EXPERIMENTAL EVALUATION 

Test of the proposed method is performed using publicly 
available Corel1000 dataset [7]. The dataset consists of 1000 
images classified into following 10 categories: Africa people, 
Beach, Buildings, Buses, Dinosaurs, Elephants, Flowers, 
Horses, Mountains and Food. An example image for every 
category is presented in Fig. 2. The dataset is characterized by 
large intra-category variations, which makes this dataset close 
to the real world image classification scenario. 

We implemented the method in MATLAB and used it to 
measure the classification accuracy and time performance. To 
achieve correctness of results, tests were repeated for 50 times 
over random partitions of every category. We experimented 
with different number of training images per class. 
Classification accuracy results are presented in Table 1.  

 
Table 1. Comparison of  classification accuracy on Corel1000 dataset depending on the number of images per class. Standard deviations are 
given in brackets. 
 

 
% of training images per class 

80% 50% 20% 

K-ELM 90.86 (±1.32) 89.58 (±1.24) 85.49(±1.07) 
SVM (kernel) [14] 90.79 (±1.92) 88.26 (±1.62) 84.04 (±0.87) 
SVM (linear) [14] 89.62 (±1.27) 87.65 (±1.03) 83.41 (±1.25) 

 
 

We further measured average training and testing time of 
the method on an Intel Core i7 3.5GHz computer. Training 
time of the complete training set was less than 1 second, while 
classification of a test image is done instantly (< 0.1ms). 
These results demonstrate high performances in terms of 
training and test speed on the test dataset. 

In order to compare results of the ELM with other common 
classification techniques, we measured accuracy of the Linear 

SVM and kernelized RBF SVM [14], on the same dataset. 
Linear SVM parameter C was set to value 0.1. RBF SVM 
optimal parameters were determined by grid-search and 5-fold 
cross-validation, where C was examined in range [2-4, …, 210], 
and γ in range [2-10,.., 24]. On the other hand, parameters of K-
ELM were set to fixed values C=10 and γ=210. It can be noted 
from experimental results that in terms of accuracy ELM 
constantly outperforms both Linear SVM and kernelized RBF 
SVM, without additional computational costs. 
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V. CONCLUSION 

In this study we presented results of our research in the 
field of automatic image classification using Kernel based 
ELM classifier (K-ELM) combined with LBP image 
descriptor. K-ELM classifier could be used as an effective 
alternative to the commonly used SVM methods.  We reached 
classification accuracy of over 90%, on a test dataset 
containing 1000 images in 10 categories, what is high quality 
result on this dataset.  It can be concluded that combination of 
K-ELM classifier with the LBP image descriptor is reasonable 
choice for image classification applications. In the further 
research, we plan to investigate integration of other image 
descriptors combined with K-ELM classifier. Particularly we 
will focus our research on fusion of color and texture 
descriptors. 
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