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Abstract – We propose a novel interface that visualizes a 3D 
mesh form the Polygon File Format (PLY), which represent a 
Martian terrain data. It juxtaposes the crater location, which co-
ordinates of the center and diameter are specified in another input 
file. This program is designed to check and manually correct the 
results, obtained by the craters detection algorithm (CDA). This 
validation software is developed for use by astronomers. The focus 
is on the ergonomics of the interface and features. 
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I. INTRODUCTION 
 

The collision of celestial bodies, such as asteroids or mete-
orites, gives as result craters on their surface. The study of dif-
ferent morphological features of craters, and counting their 
numbers, is the only method to estimate the age of the celestial 
body. Therefore, it is a problem of great scientific importance 
in astronomy. The complexity of the problem arises when the 
impact crater zones are very heterogeneous due to the distribu-
tion and size of the craters. 

 
To be able to solve partially this issue, different methodolo-

gies of geometric image analysis are proposed. They are ap-
plied to 2D or 3D data for automatic crater detection. Indeed, 
the manual identification of craters on the planet surface is an 
effective and precise method. The volume of data that needs to 
be processed grows with the development of new imaging tech-
nologies. That pushes scientists to look for a fully automatic 
method.  

 
The combination of the two techniques (manual and auto-

mated) is a good solution of the problem. It is based on a rapid 
automatic pre-detection of craters that serves as a base to the 
human validation. We provide an ergonomic interface for vis-
ualization of 3D craters, which can correct the automatic detec-
tion. 

 
The rest of the paper is organized as follows: in Section II, 

the existing approaches related to crater detection and interface 
are briefly described. In Section III, we describe the environ-
mental data, then we develop the core of our interface in Sec-
tion IV. The Section V is dedicated to the theoretical solutions 
for the visualization of 3D meshes. We present our results in 
Section VI. Conclusions and direction of future research are 
given in Section VII. 

 

II. RELATED WORKS 
 

Many CDAs have been developed. They are based on 2D 
image data or 3D data, often in the form of Digital Elevation 
Model (DEM). The different approaches developed for 2D 
CDA are: the circle fitting [1], the exhibition of highlight and 
shadow region matching [2] or analysis textures [3]. Several 
approaches combine many of these methods [4]. 

 
The advantages of using detection from DEM data are the 

high resolution and the lack of hypothesis for the reflection of 
the surface, as well as the integration of additional 3D infor-
mation. Previous works in this area are based on the detection 
of edges [5], identification of contours as a local circular de-
pression [6] or the circle fitting Hough transform [7].  

 
The creation of an ergonomic interface and 3D visualization 

of data, has been sparsely discussed in scientific works, often 
focusing on results and theoretical issues. 

 
There are some works, which incorporate a graphical inter-

face and they make the connection with CDA [8] and the exist-
ing functionality of Geographic Information System (GIS) soft-
ware. For example, ArcGIS and QGis and various external 
searching modules [9], [10], based on the same software, each 
time in 2D. As far as we know, there is no reference regarding 
the 3D visualization of meshes, combined with the displaying 
of detecting craters by CDA. 

 
III. ENVIRONMENT AND DATA 

 
A. Environment 

 
The C ++ programing language is used for the visualization 

of the interface and the data structures, used for meshes: 
Polygon File Format (PLY) and Comma Separated Values 
(CSV). Qt 4.8.6 in its version of 2013 is a cross-platform 
application framework that is widely used for developing 
application software [13].  

 
The Visualization ToolKit (VTK) is used for the acquisition 

of a 3D visualization library for manipulating meshes and .PLY 
files. It is a tool, directly linked with Qt and supports advanced 
graphics features. VTK is optimized to manage heavy amounts 
of data and complex displays. Its graphic operating resources 
are developed to run our software on    fairly modest configu-
rations, even with large files.  

 
B. Data 

 
The 3D mesh, in .PLY format, represents an area of Mars. It 

is considered for the detection, already triangulated from the 

1 Technical University of Sofia, Visual System Information Lab, 
Bulgaria.   

2 Aix-Marseille Université, CNRS, LSIS UMR 7296, France. 
3 Aix-Marseille Université, France. 
4 Aix-Marseille Université, CNRS, LAM UMR 7326, France. 

171



DEM. In our case, it is a large data: over 5 million points (ver-
tex) and 10 million faces. For comparison, the smaller ones are 
about 3 million points and 6 million faces. The area is a sample 
of 0.46 km / mesh. The input file is detected with a .CRAT file 
(CRATer extension, especially created for this work). This is a 
CSV file, with the following structure: coordinates of X, Y, Z 
of the center and the diameter of craters, detected by a CDA. 

 
IV. DEVELOPMENT OF THE INTERFACE 

 
A. Menus and windows 

 
For the functional and ergonomic interface, we use the com-

plex Qt classes - QMainWindow. The global window of the 
software contains a top menu, side toolbars, footer menu and 
the viewing window VTK. We made many inheriting of Qt 
classes to define our own widgets (Fig. 2). The main file gen-
erates a MainWindow, containing a CentralWindow, derived 
from VTKWidget class. The latter inherits the characteristics 
of QVTKWidget class. These heritages allow us to override 
certain functions of the original classes, while maintaining the 
interactions between all these objects. In the main window, we 
define the areas of the program: (1) a horizontal toolbar (Fig. 1. 
at the top of the window.), which contain the main interactions, 
opening files, saving, display options, etc. ; (2) a lateral toolbar 
(Fig. 3) irremovable for configuring the mouse modes of action 
(add a crater trackball mode, etc.) and display a basic infor-
mation about uploaded files; (3) the central window, in which 
the mesh is displayed and where the user can click to move or 
edit 3D craters (Fig. 1 right). 

 
 
 

 

 
Fig. 2. Bloc diagram Fig. 3. The lateral toolbar 

 
All functionality of the menu and the toolbar are connected 

to signals and slots (a language construct introduced in Qt for 
communication between objects [14]), to pass them on the pro-
gram's global data (the list of craters) or to change the Interactor 
mouse (see Section IV-c). We manage pop-ups: (1) for search-
ing of files that will be used and (2) to link these windows to 
the main application. The theoretical solutions of all the fea-
tures are explained in Section V. 
 

B. Displaying the grid 
 

The solution had to be considered for a fluid display of the 
mesh, which can be moved, enlarged and covered, in all direc-
tions, by the user. To load the file, a decimation algorithm was 

 
 

Fig. 1. The interface 
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used to produce a lower level of detail. It is sufficient to con-
tinue to distinguish the biggest reliefs. In fact, it is destined to 
be displayed instead of the detailed model, every time the cam-
era moves and zooms. In this way, to move the entire mesh re-
mains a fluid process. Once the model is positioned, it is the 
detailed version that appears. This technique, used in GIS soft-
ware [10] does not utilize many graphics resources and makes 
visualizing in real-time the mesh of millions of polygons pos-
sible. The decimation technique is presented in Section IV. The 
number of polygons, obtained in the decimation step, cannot be 
known in advance. In our case, it depends on the desired re-
freshing rate, produced during the movement and is thus likely 
to vary, depending on system configuration. The performances 
do not vary. Fig.4 illustrates both Level of Detail (LOD). 

 

 
Fig. 4. Comparison between original 10 million polygons meshes 

(left) and decimated one of ~ 1000 polygons (right). 
 

On Fig. 5 is presented a gray material, specular component 
of the dominant light. It is rather difficult to spot instinctively 
the potential craters. We implemented a staining method, which 
is called geographic. We have done a color mapping at each 
point, which depend on the value, ranges of distances from the 
center of Mars. More a point is far from the center of Mars (and 
therefore the high altitude), more the color should be cold (in a 
classic pattern red -> green -> blue). We get a very convenient 
local coloring, because of the abrupt altitude depressions, the 
result of a color change, as shown in Fig. 5. 
 

 
Fig. 5. Comparison between the original (left) and the geographic 

staining (right). 
 

This staining was obtained by the computing the radius of 
the planet center, located at X, Y, Z (0,0,0) in the landmark 
planet. It is a color scale between the minimal and the maximal 
height and the correct color range is assigned to each point. 
There is a significant improvement for the identification of 
small craters (a few kilometers) on the mesh. If we are very 
close to the surface, it was a difficult case to distinguish craters 
without coloring. That becomes an additional tool to facilitate 
the manual detection. 

 

C. User interactions and the .CRAT file 
 

We present an ergonomic operating interface, which seems 
to be intuitive to users, who are accustomed to software as QGis 
[10]. We implemented four classes. Each of them correspond-
ing to one of the four modes: (1) TRACKBALL uses to move 
the mesh to rotate and zoom in / out, and resumes the VTK 
usual trackball by adding features, such as changing the associ-
ated focal point with a double click. (2) ADD CRATER allows 
clicking on the mesh to include therein a crater. It is represented 
as a sphere. Holding down the button, the size of the crater can 
be adjusted and it starts from the original size adjustment, with 
the slider lateral toolbar. (3) EDIT CRATER can "raise" a 
crater to its correct position and adjust its diameter. (4) RE-
MOVE CRATER allows removing a crater. If the user makes 
a mistake or if he wants to invalidate a false positive, it is pro-
posed a drag function. If we lose the click outside the bounding 
sphere of the crater, it is not deleted. During these actions, the 
overall craters list is updated in real time and is recordable, at 
any time, in .CRAT format. This file format is used as input or 
output information data for the CSV files. We can load the de-
tection file, make all kinds of changes and save the modified 
file. This makes much faster the detection of craters, retaining 
the human critical look at the results. Finally, we illustrate the 
different modes and which colors are associated with the cra-
ters, as shown in Fig. 1 (central window). With green mesh are 
covered craters, detected by the CDA, orange mesh is added by 
hand and a red mesh indicates a crater ready to be removed. 

 
V. THEORETICAL SOLUTIONS  

 
A. Decimation of surfaces 

 
 To streamline the interface, we discussed the idea of a hi-
erarchy of levels of detail. It is called by the current perfor-
mance of the center window. Thus, we use a quadratic mesh 
decimation that preserves the overall topology of the form by 
drastically reducing the number of polygons. It is based on the 
classification of points [12] according to their complexity: (1) 
by calculating the distance to the tangent to the surface plane 
and (2) by comparing the decimated surfaces and the not deci-
mated, with a quadratic computing (improved decimation sim-
ple). It is in conjunction with the class, which manages the dif-
ferent LODs and allows setting the desired performance.  
 

B. Picking 
 

 Another important feature is the ability to click on a 3D point 
and to select the mesh, corresponding to the clicked place, or 
picking. The mouse coordinates are tied with the 2D (on the 
screen) to their 3D projection on the existing surface and recov-
ers the point, which is the nearest place, considered as a mesh. 
The VTK has a picking manager, which works by ray tracing. 
Between the camera and the clicked point, we are launching a 
radius straight until the launching of the mesh or the bounding 
sphere of a crater. Then, we made a linear interpolation and we 
found a contact with the point, which recovers a "real" point. 
This method of picking is very effective and accurate. It allows 
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moving a crater, "sticky" to the surface below, rather than mov-
ing the camera in the plane or on an axis of the mark. It ensures 
that the action of moving of a crater remains faithful to other 
3D craters. 
 

C. Fitting / Orientation 
 

 Finally, two problems have been solved: (1) to correct an off-
set between the mesh and the real crater and (2) to fit the mesh 
covering the crater to the size of the real crater. The offset is a 
known error, due to the improper manual submission by geol-
ogists [11]. We propose a correction of inaccurate detections 
craters (see Section IV-C). To guide our disc in the space, we 
used the least squares optimization method. For surface fitting, 
we have the coordinates of the center of Mars, as information 
on the craters file. We calculate the direction of the Martian 
axe, passing through its center. We use it as a normal to orient 
our mesh in successive rotations. This method is more elegant 
in its simplicity.  
 

VI. RESULTS 
 

Once we have a .CRAT file, listing all the supposed detected 
craters by the CDA, the corresponding mesh is loaded into our 
visualization program. We can see the 3D detected craters. It is 
easy to identify the offset and to correct in some few clicks. In 
addition, we can add a forgotten crater. 

 

  
Fig. 6. Visualization of craters, 
which are detected by a CDA. 

Fig. 7. Visualization of craters, 
which are detected after manual 

corrections. 
 
It is difficult to represent exhaustively the results, because 

the detection rate is important. We can present it as a significant 
contribution to the detection algorithms. We illustrate the offset 
correction on the file, between the output of an algorithm CDA 
and its validation by the user on a small area of Mars. Correc-
tions are applied in a few seconds (Fig. 6 and Fig. 7). 

 

After the saving a .CRAT file, we obtain a theoretically per-
fect detection (if it is performed by an expert). The simplicity 
of the validation provides high-performance detection in a short 
time, by combining a starting rate and an effective manual cor-
rection. 

VII. CONCLUSION 

We present an interface for validation, which allows users to 
browse intuitively 3D meshes. It induces a better perception of 
reliefs than 2D. It can move and adjust the craters. For this 

work, we were focused on the development phase on the fun-
damental points of the program, namely the picking and user 
interactions. For future work, we think to improve the perfor-
mance, with the management of more than two levels of detail. 
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