
New interactive interface for visualization of 3D meshes
Nicole Christoff1, 2, Hadrien Greef3, Sébastien Germond-Mazet3, Jean-Luc Mari2,

Laurent Jorda4 and Agata Manolova1

Abstract – We propose a novel interface that visualizes a 3D
mesh form the Polygon File Format (PLY), which represent a
Martian terrain data. It juxtaposes the crater location, which co-
ordinates of the center and diameter are specified in another input
file. This program is designed to check and manually correct the
results, obtained by the craters detection algorithm (CDA). This
validation software is developed for use by astronomers. The focus
is on the ergonomics of the interface and features.

Keywords – 3D mesh, interface, visualization, craters

I. INTRODUCTION

The collision of celestial bodies, such as asteroids or mete-
orites, gives as result craters on their surface. The study of dif-
ferent morphological features of craters, and counting their
numbers, is the only method to estimate the age of the celestial
body. Therefore, it is a problem of great scientific importance
in astronomy. The complexity of the problem arises when the
impact crater zones are very heterogeneous due to the distribu-
tion and size of the craters.

To be able to solve partially this issue, different methodolo-

gies of geometric image analysis are proposed. They are ap-
plied to 2D or 3D data for automatic crater detection. Indeed,
the manual identification of craters on the planet surface is an
effective and precise method. The volume of data that needs to
be processed grows with the development of new imaging tech-
nologies. That pushes scientists to look for a fully automatic
method.

The combination of the two techniques (manual and auto-

mated) is a good solution of the problem. It is based on a rapid
automatic pre-detection of craters that serves as a base to the
human validation. We provide an ergonomic interface for vis-
ualization of 3D craters, which can correct the automatic detec-
tion.

The rest of the paper is organized as follows: in Section II,

the existing approaches related to crater detection and interface
are briefly described. In Section III, we describe the environ-
mental data, then we develop the core of our interface in Sec-
tion IV. The Section V is dedicated to the theoretical solutions
for the visualization of 3D meshes. We present our results in
Section VI. Conclusions and direction of future research are
given in Section VII.

II. RELATED WORKS

Many CDAs have been developed. They are based on 2D
image data or 3D data, often in the form of Digital Elevation
Model (DEM). The different approaches developed for 2D
CDA are: the circle fitting [1], the exhibition of highlight and
shadow region matching [2] or analysis textures [3]. Several
approaches combine many of these methods [4].

The advantages of using detection from DEM data are the

high resolution and the lack of hypothesis for the reflection of
the surface, as well as the integration of additional 3D infor-
mation. Previous works in this area are based on the detection
of edges [5], identification of contours as a local circular de-
pression [6] or the circle fitting Hough transform [7].

The creation of an ergonomic interface and 3D visualization

of data, has been sparsely discussed in scientific works, often
focusing on results and theoretical issues.

There are some works, which incorporate a graphical inter-

face and they make the connection with CDA [8] and the exist-
ing functionality of Geographic Information System (GIS) soft-
ware. For example, ArcGIS and QGis and various external
searching modules [9], [10], based on the same software, each
time in 2D. As far as we know, there is no reference regarding
the 3D visualization of meshes, combined with the displaying
of detecting craters by CDA.

III. ENVIRONMENT AND DATA

A. Environment

The C ++ programing language is used for the visualization

of the interface and the data structures, used for meshes:
Polygon File Format (PLY) and Comma Separated Values
(CSV). Qt 4.8.6 in its version of 2013 is a cross-platform
application framework that is widely used for developing
application software [13].

The Visualization ToolKit (VTK) is used for the acquisition

of a 3D visualization library for manipulating meshes and .PLY
files. It is a tool, directly linked with Qt and supports advanced
graphics features. VTK is optimized to manage heavy amounts
of data and complex displays. Its graphic operating resources
are developed to run our software on fairly modest configu-
rations, even with large files.

B. Data

The 3D mesh, in .PLY format, represents an area of Mars. It

is considered for the detection, already triangulated from the

1 Technical University of Sofia, Visual System Information Lab,
Bulgaria.

2 Aix-Marseille Université, CNRS, LSIS UMR 7296, France.
3 Aix-Marseille Université, France.
4 Aix-Marseille Université, CNRS, LAM UMR 7326, France.

171

DEM. In our case, it is a large data: over 5 million points (ver-
tex) and 10 million faces. For comparison, the smaller ones are
about 3 million points and 6 million faces. The area is a sample
of 0.46 km / mesh. The input file is detected with a .CRAT file
(CRATer extension, especially created for this work). This is a
CSV file, with the following structure: coordinates of X, Y, Z
of the center and the diameter of craters, detected by a CDA.

IV. DEVELOPMENT OF THE INTERFACE

A. Menus and windows

For the functional and ergonomic interface, we use the com-

plex Qt classes - QMainWindow. The global window of the
software contains a top menu, side toolbars, footer menu and
the viewing window VTK. We made many inheriting of Qt
classes to define our own widgets (Fig. 2). The main file gen-
erates a MainWindow, containing a CentralWindow, derived
from VTKWidget class. The latter inherits the characteristics
of QVTKWidget class. These heritages allow us to override
certain functions of the original classes, while maintaining the
interactions between all these objects. In the main window, we
define the areas of the program: (1) a horizontal toolbar (Fig. 1.
at the top of the window.), which contain the main interactions,
opening files, saving, display options, etc. ; (2) a lateral toolbar
(Fig. 3) irremovable for configuring the mouse modes of action
(add a crater trackball mode, etc.) and display a basic infor-
mation about uploaded files; (3) the central window, in which
the mesh is displayed and where the user can click to move or
edit 3D craters (Fig. 1 right).

Fig. 2. Bloc diagram Fig. 3. The lateral toolbar

All functionality of the menu and the toolbar are connected

to signals and slots (a language construct introduced in Qt for
communication between objects [14]), to pass them on the pro-
gram's global data (the list of craters) or to change the Interactor
mouse (see Section IV-c). We manage pop-ups: (1) for search-
ing of files that will be used and (2) to link these windows to
the main application. The theoretical solutions of all the fea-
tures are explained in Section V.

B. Displaying the grid

The solution had to be considered for a fluid display of the
mesh, which can be moved, enlarged and covered, in all direc-
tions, by the user. To load the file, a decimation algorithm was

Fig. 1. The interface

172

https://en.wikipedia.org/wiki/Qt_(toolkit)

used to produce a lower level of detail. It is sufficient to con-
tinue to distinguish the biggest reliefs. In fact, it is destined to
be displayed instead of the detailed model, every time the cam-
era moves and zooms. In this way, to move the entire mesh re-
mains a fluid process. Once the model is positioned, it is the
detailed version that appears. This technique, used in GIS soft-
ware [10] does not utilize many graphics resources and makes
visualizing in real-time the mesh of millions of polygons pos-
sible. The decimation technique is presented in Section IV. The
number of polygons, obtained in the decimation step, cannot be
known in advance. In our case, it depends on the desired re-
freshing rate, produced during the movement and is thus likely
to vary, depending on system configuration. The performances
do not vary. Fig.4 illustrates both Level of Detail (LOD).

Fig. 4. Comparison between original 10 million polygons meshes

(left) and decimated one of ~ 1000 polygons (right).

On Fig. 5 is presented a gray material, specular component
of the dominant light. It is rather difficult to spot instinctively
the potential craters. We implemented a staining method, which
is called geographic. We have done a color mapping at each
point, which depend on the value, ranges of distances from the
center of Mars. More a point is far from the center of Mars (and
therefore the high altitude), more the color should be cold (in a
classic pattern red -> green -> blue). We get a very convenient
local coloring, because of the abrupt altitude depressions, the
result of a color change, as shown in Fig. 5.

Fig. 5. Comparison between the original (left) and the geographic

staining (right).

This staining was obtained by the computing the radius of
the planet center, located at X, Y, Z (0,0,0) in the landmark
planet. It is a color scale between the minimal and the maximal
height and the correct color range is assigned to each point.
There is a significant improvement for the identification of
small craters (a few kilometers) on the mesh. If we are very
close to the surface, it was a difficult case to distinguish craters
without coloring. That becomes an additional tool to facilitate
the manual detection.

C. User interactions and the .CRAT file

We present an ergonomic operating interface, which seems
to be intuitive to users, who are accustomed to software as QGis
[10]. We implemented four classes. Each of them correspond-
ing to one of the four modes: (1) TRACKBALL uses to move
the mesh to rotate and zoom in / out, and resumes the VTK
usual trackball by adding features, such as changing the associ-
ated focal point with a double click. (2) ADD CRATER allows
clicking on the mesh to include therein a crater. It is represented
as a sphere. Holding down the button, the size of the crater can
be adjusted and it starts from the original size adjustment, with
the slider lateral toolbar. (3) EDIT CRATER can "raise" a
crater to its correct position and adjust its diameter. (4) RE-
MOVE CRATER allows removing a crater. If the user makes
a mistake or if he wants to invalidate a false positive, it is pro-
posed a drag function. If we lose the click outside the bounding
sphere of the crater, it is not deleted. During these actions, the
overall craters list is updated in real time and is recordable, at
any time, in .CRAT format. This file format is used as input or
output information data for the CSV files. We can load the de-
tection file, make all kinds of changes and save the modified
file. This makes much faster the detection of craters, retaining
the human critical look at the results. Finally, we illustrate the
different modes and which colors are associated with the cra-
ters, as shown in Fig. 1 (central window). With green mesh are
covered craters, detected by the CDA, orange mesh is added by
hand and a red mesh indicates a crater ready to be removed.

V. THEORETICAL SOLUTIONS

A. Decimation of surfaces

 To streamline the interface, we discussed the idea of a hi-
erarchy of levels of detail. It is called by the current perfor-
mance of the center window. Thus, we use a quadratic mesh
decimation that preserves the overall topology of the form by
drastically reducing the number of polygons. It is based on the
classification of points [12] according to their complexity: (1)
by calculating the distance to the tangent to the surface plane
and (2) by comparing the decimated surfaces and the not deci-
mated, with a quadratic computing (improved decimation sim-
ple). It is in conjunction with the class, which manages the dif-
ferent LODs and allows setting the desired performance.

B. Picking

 Another important feature is the ability to click on a 3D point
and to select the mesh, corresponding to the clicked place, or
picking. The mouse coordinates are tied with the 2D (on the
screen) to their 3D projection on the existing surface and recov-
ers the point, which is the nearest place, considered as a mesh.
The VTK has a picking manager, which works by ray tracing.
Between the camera and the clicked point, we are launching a
radius straight until the launching of the mesh or the bounding
sphere of a crater. Then, we made a linear interpolation and we
found a contact with the point, which recovers a "real" point.
This method of picking is very effective and accurate. It allows

173

moving a crater, "sticky" to the surface below, rather than mov-
ing the camera in the plane or on an axis of the mark. It ensures
that the action of moving of a crater remains faithful to other
3D craters.

C. Fitting / Orientation

 Finally, two problems have been solved: (1) to correct an off-
set between the mesh and the real crater and (2) to fit the mesh
covering the crater to the size of the real crater. The offset is a
known error, due to the improper manual submission by geol-
ogists [11]. We propose a correction of inaccurate detections
craters (see Section IV-C). To guide our disc in the space, we
used the least squares optimization method. For surface fitting,
we have the coordinates of the center of Mars, as information
on the craters file. We calculate the direction of the Martian
axe, passing through its center. We use it as a normal to orient
our mesh in successive rotations. This method is more elegant
in its simplicity.

VI. RESULTS

Once we have a .CRAT file, listing all the supposed detected
craters by the CDA, the corresponding mesh is loaded into our
visualization program. We can see the 3D detected craters. It is
easy to identify the offset and to correct in some few clicks. In
addition, we can add a forgotten crater.

Fig. 6. Visualization of craters,
which are detected by a CDA.

Fig. 7. Visualization of craters,
which are detected after manual

corrections.

It is difficult to represent exhaustively the results, because

the detection rate is important. We can present it as a significant
contribution to the detection algorithms. We illustrate the offset
correction on the file, between the output of an algorithm CDA
and its validation by the user on a small area of Mars. Correc-
tions are applied in a few seconds (Fig. 6 and Fig. 7).

After the saving a .CRAT file, we obtain a theoretically per-
fect detection (if it is performed by an expert). The simplicity
of the validation provides high-performance detection in a short
time, by combining a starting rate and an effective manual cor-
rection.

VII. CONCLUSION

We present an interface for validation, which allows users to
browse intuitively 3D meshes. It induces a better perception of
reliefs than 2D. It can move and adjust the craters. For this

work, we were focused on the development phase on the fun-
damental points of the program, namely the picking and user
interactions. For future work, we think to improve the perfor-
mance, with the management of more than two levels of detail.

ACKNOWLEDGEMENT

This paper was supported by Contract No 162ПД0033-07 of

Technical University-Sofia, Research Sector. Research project:
«Segmentation and modeling of geometrical characteristics of
3D objects» - 2016.

REFERENCES

[1] L. Luo, X. Wang, W. Ji and C. Li, “Automated detection of lunar

craters based on Chang’E-1 CCD data”,The Fourth International
Congress on Image and Signal Processing, vol. 2, Shanghaï, 2011

[2] E. R. Urbach, “Classification of objects consisting of multiple
segments with application to crater detection”, Proceedings of

Eighth International Symposium on Mathematical Morphology,
pp. 81–82, Rio de Janeiro, Brazil, 2007.

[3] T. Barata, E.I. Alves, J. Saraiva and P. Pina, “Automatic recog-

nition of impact craters on the surface of Mars”, A. Campiho, M.

Kamel, (Eds.), Image Analysis and Recognition, Lecture Notes
in Computer Science, vol. 3212. Springer, Berlin/Heidelberg, pp.
489–496, 2004

[4] W. Ding, T.F. Stepinski, Y. Mu, “Subkilometer crater discovery

with boosting and transfer learning”, ACM Trans. Intell. Syst.

Technol. (TIST) vol. 2, no.4, p.39, 2011
[5] G. Salamuniccar and S. Loncaric, “Method for crater detection

from Martian digital topography data using gradient value/orien-
tation, morphometry, vote analysis, slip tuning, and calibration.”,
IEEE Trans. Geosci. Remote Sens. vol. 48, pp. 2317–2329, 2010

[6] T.F. Stepinski, M.P. Mendenhall and B.D. Bue, “Machine cata-
loging of impact craters on Mars”, Icarus vol. 203, no. 1, pp. 77–

87, 2009
[7] L. Luo, L. Mu, X. Wang, C. Li, W. Ji, J. Zhao and H. Cai, “Global

detection of large lunar craters based on the CE-1 digital eleva-
tion model”, Front. Earth Sci. vol. 7, no. 4, pp. 456–464, 2013

[8] F. Baum and M. Zanetti, “Streamlined generalization tool for

planetary surface mapping using ArcGIS ModelBuilder software
on multispectral datasets”, 46th Lunar and Planetary Science

Conference, 2015
[9] T. Kneissl, S. van Gasselt and G. Neukum, “New software tool

for map-projection-independent crater size-frequency determina-
tion in ArcGIS”, 41st Lunar and Planetary Science Conference,

2010
[10] T. Ojala, M. Pietikïnen and D. Harwood, “A comparative study

of texture measures with classification based on feature distribu-
tions”, Pattern Recognition, vol. 29, pp.51–59, 1996

[11] W. J. Schroeder, J. A. Zarge and W. E. Lorensen, “Decimation of

Triangle Meshes”, Conference Proceedings of SIGGRAPH, pp.

65-70, 1992
[12] W. J. Schroeder, J. A. Zarge and W. E. Lorensen, “Decimation of

Triangle Meshes”, Conference Proceedings of SIGGRAPH, pp.

65-70, 1992
[13] https://wiki.qt.io/Qt_for_Beginners
[14] https://en.wikipedia.org/wiki/Signals_and_slots

174

https://wiki.qt.io/Qt_for_Beginners
https://en.wikipedia.org/wiki/Signals_and_slots

