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Abstract – A comparison of the developed complex Hadamard 

transform with the well-known unitary (orthogonal) transforms 
of Karhunen-Loeve, Fourier, Walsh-Hadamard and discrete 
cosine transform is presented. The comparison is made on the 
base of minimization of mean-squared error of reconstructed 
transform coefficients for two test images. 
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I. INTRODUCTION 

The use of unitary (orthogonal) transformations is 
inextricably linked with the development of modern digital 
image processing methods. Discrete unitary transforms 
described in [1], [2] and [3], have found applications in many 
areas of N-dimensional signal processing, spectral analysis, 
pattern recognition, digital coding, computational 
mathematics and etc. Stated simply, these transform 
coefficients that are small may be excluded from processing 
operations, such as filtering, compression and etc., without 
much loss in processing accuracy. 

In this article a comparison of the developed complex 
Hadamard transform [4] with most used unitary transforms of 
Karhunen-Loeve (KLT), Fourier (DFT), Walsh-Hadamard 
(WHT) and discrete cosine transform (DCT) is presented.  
There are various studies and comparisons of the orthogonal 
transforms [5], [6], [7], in which they discussed their 
properties, advantages and disadvantages from a statistical 
point of view. In this article a comparison of transformations 
in terms of the developed method [8] for optimal performance 
of the coefficients at the block coding for two test images was 
made. 

The comparison is made through simulation of the 
developed algorithms for five unitary transforms – FFT, DCT, 
WHT, KLT and CHT on Matlab environment for two test 
images “Lena” and “Fruits” and the results are given in the 
experimental part. 

II. MATHEMATICAL DESCRIPTION 

The forward and the inverse 2D discrete unitary transform 
of sub-image g(x,y) of size NxN can be expressed as the 

following equations: 

∑∑

∑∑
−

=

−

=

−

=

−

=

=

=

1

0

1

0

1

0

1

0

N

u

N

v

N

x

N

y

)v,u,y,x(t).v,u(S)y,x(g

)v,u,y,x(r).y,x(g)v,u(S
 .       (1) 

In this equations g(x,y) is the input image with spatial 
variables (x,y), S(u,v) is forward transform with transform 
variables (u,v), r(x,y,u,v) and t(x,y,u,v) are called the forward 
and inverse transformation kernels, respectively. Because the 
inverse kernel t(x,y,u,v) in (1) depends only on the indices 
(x,y,u,v) and not on the values of g(x,y) and S(u,v), it can be 
viewed as defining a set of basis functions or basis images [3]. 

This interpretation becomes clearer if the equation is 
modified in matrix form: 
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where: Gxy is NxN matrix containing the pixels of g(x,y), the 
matrices Tuv are the basis images and S(u,v) are the spectral 
coefficients. 

The forward transformation kernel is said to be separable if: 

  r(x,y,u,v)=r1(x,u).r2(y,v) ,      (3) 

and the kernel is said to be symmetric if r1(x,u) functionally 
equal to r2(y,v), so that: 

  r(x,y,u,v)=r1(x,u).r1(y,v) .      (4) 

Identical comments apply to the inverse kernel by replacing 
function r(x,y,u,v) with t(x,y,u,v) in the equations (1).  

As a sample the 2D Fourier transform has the following 
forward and inverse kernels: 
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where 1−=j , so these kernels are complex. 

A computationally simpler Walsh-Hadamard transform is 
derived form the following functionally identical kernels [3]: 
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where n=2m. The summation in the exponent is performed in 
modulo 2 arithmetic and bz(k) is the kth bit in the binary 
representation of z.  The pi(l) is the conversion of bz(k) with 
code of Grey.  
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The most used discrete cosine transformation is obtained by 
following equal kernels: 
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and similarly for a(v).  
The identical description for the developed complex 

Hadamard transformation kernels are made in [9] and are used 
for comparison. 

The kernels of optimal Karhunen-Loeve transformation are 
calculated for each test image by calculation the correlation 
function and the preparation of the eigenvalues and 
eigenvectors as is given in [1]. To simplify the calculations 
the input learning vectors are taken from the current test 
image consecutively according to image linear scanning.  

From the equations (1) to (4) the compared transformations 
can be generalized for two-dimensional signals (images) in 
the following way: 
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where: [X] is matrix of the input image with size NxN, [T] is a 
matrix form of each transform kernel and the result is a spatial 
spectrum matrix [Y] with the same size. 

The symmetry of [T] matrix coefficients allows 2D 
transforms to be accomplished in two steps. The first one is 
one-dimensional transform for every row of the image and the 
second one is one-dimensional transform for the columns. 
This difference of transformation makes easier the 
calculations and the symmetry guarantees that the correlations 
between image elements in horizontal and vertical direction 
will influence in the same way the determination of 
transformed elements. The same considerations can be made 
for two steps calculation of the inverse 2D transforms. 

III. Experimental Results 

The comparison is made on Matlab environment for five 
2D unitary transforms – Karhunen-Loeve, Discrete Fourier 
Transform, Discrete Cosine Transform, Discrete Walsh-
Hadamard Transform and Complex Hadamard Transform. 
The obtained experimental results for the test grayscale 
images “Lenna” and “Fruits” shown on the Fig.1b and Fig.1a 
with size 512x512 pixels and 8 bits per pixel. 

The simulations ware made for each image by 
transformation with kernel with size 8x8. The transform 

coefficients are reduced by the using of presented in [8] block 
truncation coding algorithm. 

The obtained experimental results for the test images 
“Lenna” and “Fruits” (512x512, 8 bits) with sub-image kernel 
8x8 are given on Table 1 and Table 2 respectively. 

 
TABLE 1.  

Reduction type MSE NMSE SNR, 
dB 

PSNR, 
dB 

48 Reduced Coefficients, 16 saved 
Zero DFT 114.488 1.47 x10-5 48.3180 27.5772 
Mean DFT 103.124 1.32 x10-5 48.7720 28.0312 
Zero DCT -0.3842 -4.9 x10-8 73.0599 52.3191 
Mean DCT -0.2903 -3.7 x10-8 74.2765 53.5357 
Zero WHT 19.0409 2.45 x10-6 56.1087 35.3679 
Mean WHT 16.1269 2.07 x10-6 56.8301 36.0893 
Zero CHT 16.2735 2.09 x10-6 56.7908 36.0500 
Mean CHT 15.0354 1.93 x10-6 57.1345 36.3936 
Zero KLT 299.676 3.86 x10-5 44.1391 23.3983 
Mean KLT 249.875 3.21 x10-5 44.9283 24.1875 

55 Reduced Coefficients, 9 saved 
Zero DFT 126.300 1.62 x10-5 47.8915 27.1507 
Mean DFT 113.403 1.45 x10-5 48.3593 27.6185 
Zero DCT -0.2014 -2.6 x10-8 75.8649 55.1241 
Mean DCT -0.0054 -7.0 x10-10 91.5437 70.8029 
Zero WHT 48.4430 6.23 x10-6 52.0533 31.3125 
Mean WHT 45.8332 5.89 x10-6 52.2938 31.5530 
Zero CHT 46.2743 5.95 x10-6 52.2522 31.5114 
Mean CHT 42.5687 5.48 x10-6 52.6147 31.8739 
Zero KLT 313.557 4.03 x10-5 43.9424 23.2016 
Mean KLT 260.008 3.34 x10-5 44.7557 24.0149 

 
TABLE 2.  

Reduction type MSE NMSE SNR, 
dB 

PSNR, 
dB 

48 Reduced Coefficients, 16 saved 
Zero DFT 20.2979 3.53 x10-6 54.5211 35.0903 
Mean DFT 17.7615 3.08 x10-6 55.1008 35.6699 
Zero DCT -2.0464 -3.5 x10-7 64.4855 45.0547 
Mean DCT -2.0174 -3.5 x10-7 64.5477 45.1168 
Zero WHT 3.7753 6.56 x10-7 61.8261 42.3952 
Mean WHT 0.8382 1.45 x10-7 68.3620 48.9312 
Zero CHT 0.8032 1.39 x10-7 68.5470 49.1162 
Mean CHT 0.3326 5.78 x10-8 72.3756 52.9448 
Zero KLT 61.9106 1.07 x10-5 49.6779 30.2472 
Mean KLT 55.0704 9.58 x10-6 50.18.64 30.7556 

55 Reduced Coefficients, 9 saved 
Zero DFT 22.203 3.86 x10-6 54.1313 34.7005 
Mean DFT 20.814 3.62 x10-6 54.4119 34.9811 
Zero DCT -3.8473 -6.7 x10-7 61.7440 42.3132 
Mean DCT -4.0750 -7.1 x10-7 61.4943 42.0635 
Zero WHT 5.2066 9.06 x10-7 60.4300 40.9992 
Mean WHT 3.7104 6.45 x10-7 61.9014 42.4705 
Zero CHT 7.1197 1.24 x10-6 59.0710 39.6402 
Mean CHT 6.1880 1.07 x10-6 59.6801 40.2493 
Zero KLT 62.011 1.07 x10-5 49.6709 30.2400 
Mean KLT 54.837 9.53 x10-6 50.2048 30.7740 
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In the first part of each table the results for 48 reduced 
coefficients (the upper-left block with size 4x4 are saved), 
approximated with zero and mean values are shown, and in 
the second part the same experiments for 55 reduced 
coefficients (the upper-left block with size 3x3 - saved) are 
shown. The calculated values for the mean-square error 
(MSE), normalized mean-square error (NMSE), signal to 
noise ratio (SNR) and peak signal to noise ratio (PSNR) are 
shown.  

 

 
Fig.1a. Test image “LENNA” (512x512 pixels and 256 gray levels). 

Input Image 512 x 512

 
Fig.1b. Test image “FRUITS” (512x512 pixels and 256 gray levels). 

The output images after inverse transform for 48 reduced 
coefficients are showed on Fig.2a and 2b respectively. 

IV. CONCLUSION 

The general principles of comparison of 2D unitary 
transforms by the using of block transform coding of their 
coefficients of high order are given. The basic properties of 
CHT are discussed in previous publications. The obtained 
simulation results are practically identical for the CHT and 
real HT and show that both can be used in similar 
applications. 

The best results are obtained for optimal Karhunen-Loeve 
transform and for the most used in compression standards 

discrete cosine transform. The results for the CHT are better 
then the DFT for small size of kernels. 

The main advantages of the developed algorithm for CHT 
are: 

- faster calculation compared to other transformations; 
- similar results with integer valued HT; 
- using the CHT instead most complicated Fourier 

transform and keep the possibilities for working with 
complex spectrum. 

The developed Complex Hadamard Transform can be used 
in digital signal processing for spectral analysis, pattern 
recognition, digital watermarking, coding and transmission of 
one-dimensional and two-dimensional signals. 
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Output Image after zero Fourier Reduction

 

Output Image after mean Fourier Reduction

 

Output Image after zero Fourier Reduction

 

Output Image after mean Fourier Reduction

 
 

Output Image after zero Hadamard Reduction

 

Output Image after mean Hadamard Reduction

 

Output Image after zero Hadamard Reduction

 

Output Image after mean Hadamard Reduction

 
 

Output Image after zero DCT Reduction

 

Output Image after mean DCT Reduction

 

Output Image after zero DCT Reduction

 

Output Image after mean DCT Reduction

 
 

Output Image after zero Complex Hadamard Reduction

 

Output Image after mean Complex Hadamard Reduction

 

Output Image after zero Complex Hadamard Reduction

 

Output Image after mean Complex Hadamard Reduction

 
 

Output Image after zero KLT Reduction

 

Output Image after mean KLT Reduction

  

Output Image after mean KLT Reduction

 
 
      b) Output image “Fruits”              a)  Output image “Lenna” 
 

Fig.2. Output images after reduction with 48 coefficients for FFT, DCT, WHT, CHT and KLT 
 
 

Output Image after zero KLT Reduction
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