

Formal Verification of Models for M2M Device
Registration

Evelina Pencheva1, Ivaylo Atanasov1 and Anastas Nikolov1

Abstract – Device management is a challenging task in
Machine-to-Machine (M2M) communications. The increased
number of connected devices and device diversity calls for device
management that reduces the deployment time and operational
costs. Open Mobile Alliance specified Lightweight M2M protocol
for device management. In this paper, we propose device
registration models based on Lightweight M2M procedures and
a mathematical approach to behavior verification. Both server
and client models are formally described, and a concept of weak
bisimulation is used to prove that the models are synchronized.

Keywords – Device management, Finite state machines,
Behavioral equivalence, Weak besimulation

I. INTRODUCTION

Machine-to-Machine (M2M) communications have various
application areas such as automotive, home automation, smart
cities, energy efficiency, industry, agriculture, safety and
security, health, education and others. Despite the differences
all these areas set common requirements for connected
devices to communicate through different access networks,
remote configuration and control. Device management is a
challenging and critical issue due to rapidly growing number
of connected devices and their diversity [1]. A plethora of
devices and customized solutions are available on the market
and a large amount of the employed technology is proprietary
today [2], [3], [4]. This calls for abstraction of device
management functions which has to hide the complexity and
to be technology independent. Such an abstraction can be
provided by OMA LWM2M [5], [6]. Lightweight M2M is a
protocol from the Open Mobile Alliance for M2M device
management. It defines device management procedures
between a LWM2M server and a LWM2M client, which is
located in a device. The protocol may be used to create device
management solutions that apply the approach of software
defined networks [7], [8]. The proposed solutions, based on
LWM2M, consider high level architectural aspects and do not
provide details on behavioral models that follow the M2M
device management procedures. In this paper, we suggest an
approach to formal verification of LWM2M server and client
behaviour related to device management. Our models are
compliant with ETSI M2M functional architecture [9] and
Enabler Test Specification for Lightweight M2M [10]. First
we start with formal description of device registration models

and using the well known concept of weak bisimulation [11]
we prove formally that the models are synchronized. In
addition to regular device registration functions, our models
include functions related to server initiated device registration,
updating the firmware version and server disabling, and prove
that the models expose equivalent behaviour.

II. DEVICE REGISTRATION MODELS

Device registration allows the server to maintain device
reachability status. If the device is not registered it is not
reachable. When the device sends a registration request
(regreq) it moves to registering state, where it awaits the server
answer. After receiving the server answer with registration
acknowledgement, the device sets the registration timer (Treg)
and moves to registered state. If the device is registered, it is
with operational firmware and the server and device store
registration-related information making it available, on
request or based on subscription. When the registration timer
expires the device refreshes it registration. When registered,
the device may receive a soft offline request and then it sends
a de-registration request to the server and becomes
unregistered.

The device’s view point on its registration state is as
follows. In UnregisteredD state, the device is offline and it is
not registered. In Registering state, the device is in a process
of registration. In OperationalFwD, the device is registered
with operational firmware. In UpdateRegistration state a
transport binding between the server and device is established
and the device waits for registration update trigger message
from the server. In WaitDeregAck state, the device waits for
de-registration acknowledgement. In FirmwareDownloadingD
state, the device downloads the new firmware version. The
model representing the device’s view on its registration state
is shown in Fig.1.

The server’s view point on device registration state is as
follows. In UnregisteredS state, the device is not registered. In
OperationalFwS state, the device is registered with operational
firmware. In NotificationStoring state, the device is registered
and the server updates the notification storing object. In
Disabling state, the server will be disabled. In Transport-
Binding state, the device is registered and updates the
registration. In WaitUpdateAck state, the server waits for
acknowledgement of transport binding. In WaitFwVersion
state, the device is registered and the server reads the current
firmware version. In WaitDownlodAck state, the device is
registered and the server initiates the download of a new
firmware version. In FirmwareDownloadingS state, the device
downloads the new firmware version. In WaitFwActionStatus
state, the server asks for the firmware downloading status. In
WaitFwUpdate state, the server waits for acknowledgement of

1The authors are with the Faculty of Telecommunications at
Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,
Bulgaria, E-mails: enp@tu-sofia.bg; iia@tu-sofia.bg;
nikolov.anastas@gmail.com

201

firmware update. In RemoveOldFirmware state, the server
waits for acknowledgement that the old firmware version is
removed. In Rebooting state, the server waits device
rebooting. The model representing the server’s view on device
registration state is shown in Fig.2.

III. FORMAL MODEL VERIFICATION

Both models are formally described as Labeled Transition
Systems (LTS).

By RD= (SD, АctD, →D, s0
D) it is denoted an LTS

representing the authorized device’s view on its registration
state, namely:
SD = { UnregisteredD, Registering, OperationalFwD,

UpdateRegistration, FirmwareDownloadingD,
WaitDeregAck };

ActD = { online, Tdisable, initialRegack, reRegack, fwVersionreq,
removeFwreq, updateNSreq, TregD, bindreq,
updateRegcom, disablereq, rebootreq, writeFwreq,
readFwreq, updateFwreq, softOffline, deRegack };

→D = { D
1τ , D

2τ , D
3τ , D

4τ , D
5τ , D

6τ , D
7τ , D

8τ ,
D
9τ , D

10τ , D
11τ , D

12τ , D
13τ , D

14τ , D
15τ , D

16τ , D
17τ }

s0
D = { UnregisteredD },

where
D

1τ = (UnregisteredD online Registering)
D
2τ = (UnregisteredD Tdisable Registering)
D
3τ = (Registering initialRegack OperationalFwD)
D
4τ = (Registering reRegack OperationalFwD)
D
5τ = (OperationalFwD fwVersionreq OperationalFwD)
D
6τ = (OperationalFwD removeFwreq OperationalFwD)
D
7τ = (OperationalFwD updateNSreq OperationalFwD)
D
8τ = (OperationalFwD TregD Registering)
D
9τ = (OperationalFwD bindreq UpdateRegistration)
D

10τ = (UpdateRegistration updateRegcom Registering)
D

11τ = (OperationalFwD disablereq UnregisteredD)
D

12τ = (OperationalFwD rebootreq Registering)
D

13τ = (OperationalFwD writeFwreq FirmwareDownloadingD)
D

14τ = (FirmwareDownloadingD readFwreq
FirmwareDownloadingD)

D
15τ = (FirmwareDownloadingD updateFwreq OperationalFwD)
D

16τ = (OperationalFwD softOffline WaitDeregAck)
D

17τ = (WaitDeregAck deRegack UnregisteredD).
By RS= (SS, АctS, →S, s0

S) it is denoted an LTS
representing the server’s view on authorized device
registration state as follows:
SS = { UnregisteredS, OperationalFwS, TransportBinding,

NotificationStoringS, Disabling, WaitUpdateAck,

WaitFwVersion, Rebooting FirmwareDownloadingS,
WaitFwActionStatus, WaitFwUpdate, WaitDown-
loadAck, RemoveOldFirmware, };

ActS = { initialRegreq, reRegreq, TregS, deRegreq, notifStoring,
updateNSack, disable, fwAvailable, updateReg, disableack,
bindack, updateRegack, fwVersionres, writeFWres, fwTdl,
readFwres, updateFwack, removeack, rebootack }
→S ={ S

1τ , S
2τ , S

3τ , S
4τ , S

5τ , S
6τ , S

7τ , S
8τ , S

9τ , S
10τ , S

11τ ,
S
12τ , S

13τ , S
14τ , S

15τ , S
16τ , S

17τ , S
18τ , S

19τ , S
20τ , S

21τ };
 - s0

S = { UnregisteredS },
where

S
1τ = (UnregisteredS initialRegreq OperationalFwS)
S
2τ = (UnregisteredS reRegreq OperationalFwS)
S
3τ = (OperationalFwS reRegreq OperationalFwS)
S
4τ = (OperationalFwS TregS UnregisteredS)
S
5τ = (OperationalFwS deRegreq UnregisteredS)
S
6τ = (OperationalFwS notifStoring NotificationStoringS)
S
7τ = (NotificationStoringS updateNSack OperationalFwS)
S
8τ = (OperationalFwS disable Disabling)
S
9τ = (OperationalFwS fwAvailable WaitFwVersion)
S
10τ = (OperationalFwS updateReg TransportBinding)
S
11τ = (Disabling disableack UnregisteredS)
S
12τ = (TransportBinding bindack WaitUpdateAck)
S
13τ = (WaitUpdateAck updateRegack UnregisteredS)
S
14τ = (WaitFwVersion fwVersionres WaitDownloadAck)
S
15τ = (WaitDownloadAck writeFWres

FirmwareDownloadingS)
S
16τ = (FirmwareDownloadingS fwTdl WaitFwActionStatus)
S

17τ = (WaitFwActionStatus readFwres
FirmwareDownloadingS)

S
18τ = (WaitFwActionStatus readFwres WaitFwUpdate)
S
19τ = (WaitFwUpdate updateFwack RemoveOldFirmware)
S
20τ = (RemoveOldFirmware removeack Rebooting)

S
21τ = (Rebooting rebootack UnregisteredS).

Intuitively, in terms of observed behavior, two state
machines have bisimilar relation if one state machine displays
a final result and the other state machine displays the same
result [11]. Strong bisimilarity requires existence of
homomorphism between transitions in both state machines. In
practice, strong bisimilarity puts strong conditions for
equivalence which are not always necessary. For example,
internal transitions can present actions, which are internal to
the system (i.e. not observable). In weak bisimilarity, internal
transitions can be ignored. The concept of weak bisimilarity is
used to study the modeling aspects of M2M device
registration.

202

Operational
FwD

UnregisteredD

Registering

WaitDereg
Ack

Firmware
DownloadingD

Update
Registration

online, Tdisable/
initialRegreq, reRegreq

initialRegack,
reRegack/ set(TregD)

rebootreq/rebootack, reRegreq,
reset(TregD)

TregD/
reRegreq

writeFwreq/
writeFwack

updateFwreq/
updateFwack

readFwreq/
readFwack

bindreq/bindack

updateRegcom/updateRegack,
reRegreq, reset(TregD)

fwVersionreq/fwVersionack
removeFwreq/removeFwack
updateNSreq/updateNSack

softOnline/deRegreq

deRegack/
reset(TregD)

disablereq,/ disableack,
set(Tdisable)

Fig. 1. Registration state of an authorized device as seen by the device

UnregisteredS

OperationalFwS

WaitFw
Version

Wait
DownloadAck

Firmware
DownloadingS

WaitFw
ActionStatus WaitFwUpdate

RemoveOld
Firmware

Rebooting

Notification
StoringS

Disabling

Update
Binding

Wait
UpdateAck

initialRegreq,reRegreq/
initialRegack,reRegack, set(TregS)

fwAvailable/fwVersionreq

reRegreq/reRegack,set(TregS)

disable/disablereq

disableack/reset(TregS)

fwVersionres/ writeFwreq

notifStoring/
updateNSreq

updateNSack

updateReg/ bindreq

bindack/updateRegcom

updateRegack/ reset(TregS)

writeFWres / set(fwTdl)

fwTdl/ readFwreqreadFwres/ set(fwTdl) updateFwack/
removeFwreq

removeFwack/
rebootreq

readFwres/
updateFwreq

rebootack/
reset(TregS)

1

1

Fig. 2. Registration state of an authorized device as seen by the server

203

Proposition: The labeled transition systems RS’ and RD’ are

weakly bisimilar.
Proof: Let UR’S’ = {(UnregisteredD, UnregisteredS),

(OperationalFwD, OperationalFwS)}. Then:

1. For initial registration: UnregisteredD {
D

1τ , D
3τ }

OperationalFwD ∃ UnregisteredS { S
1τ } OperationalFwS;

2. For re-registration after offline: UnregisteredD {
D

1τ , D
4τ }

OperationalFwD ∃ UnregisteredS { S
1τ } OperationalFwS;

3. For de-registration: OperationalFwD {
D

11τ , D
17τ }

UnregisteredD ∃ OperationalFwS {
S
5τ }UnregisteredS;

4. For re-registration due to registration lifetime is over:
OperationalFwD {

D
8τ , D

4τ } OperationalFwD

∃OperationalFwS{ S
3τ , S

4τ , S
2τ }OperationalFwS;

5. For update notification storing: OperationalFwD

{ D
7τ }OperationalFwD ∃OperationalFwS {

S
6τ , S

7τ }
OperationalFwS;

6. For server disabling: OperationalFwD {
D

11τ }UnregisteredD ∃

OperationalFwS {
S
8τ , S

10τ }UnregisteredS;
7. For re-registration when server enables: UnregisteredD

{ D
2τ , D

4τ } OperationalFwD ∃ UnregisteredS

{ S
2τ }OperationalFwS;

8. For update registration trigger: OperationalFwD {
D
9τ , D

10τ ,
D
4τ } OperationalFwD ∃OperationalFwS {

S
10τ ,

S
12τ , S

13τ , S
2τ }OperationalFwS;

9. For update firmware version: OperationalFwD {
D
5τ ,

D
13τ , D

14τ , D
15τ , D

12τ , D
4τ } OperationalFwD

∃OperationalFwS {
S
9τ ,

S
14τ , S

15τ , S
16τ , S

17τ , S
18τ , S

19τ , S
20τ , S

21τ , S
2τ } OperationalFwS.

Therefore RS and RD are weakly bisimilar, i.e. they expose
equivalent behavior.

IV. CONCLUSION

The paper presents models of M2M device registration
status as viewed by the server and by the device. Starting with
regular models representing just registered and unregistered
device state, we expand the models with additional
functionality including server triggered registration update,
firmware version update and server disabling. We describe
models formally and prove the model synchronization by
using the concept of weak bisimilarity. The models are
applicable to Device Reachability, Addressing and Repository
Service Capability which allows re-use in different M2M
applications.

REFERENCES

[1] A. Sehgal, V. Perelman, S. Kuryla, J. Schönwälder.
Management of Resource Constrained Devices in the Internet of
Things,” IEEE Communications Magazine, December 2012,
pp.144-149.

[2] V. Tayur, R. Suchithra. “Software Defined Unified Device
Management for Smart Environments,” International Journal of
Computer Applications, 2015, vol. 121, issue 9, pp.30-34.

[3] D. Schulz, R. Gitzel, “Seamless maintenance - Integration of
FDI Device Management & CMMS,” IEEE Conference on
Emerging Technologies & Factory Automation (ETFA), 2013,
pp.402-407.

[4] C.S. Shih. C. T. Chou, K. J. Lin, B. L. Tsai, C. H Lee, D.
Cheng, C. J. Chou “Out-of-Box Device Management for Large
Scale Cyber-Physical Systems,” IEEE International Conference
on Internet of Things (iThings), and Green Computing and
Communications (GreenCom), and Cyber, Physical and Social
Computing (CPSCom), 2014, pp.402 – 407.

[5] V. Cackovic, Z. Popovic. “Device Connection Platform for
M2M communications,” IEEE International Conference on
Software, Telecommunications and Computer Networks
(SoftCOM), 2012, pp.1-7. Software, Telecommunications and
Computer Networks (SoftCOM), 2012, pp.1-7.

[6] G. Klas, F. Rodermund, Z. Shelby, S. Akhouri, J. Höller,
“Lightweight M2M: Enabling Device Management and
Applications for the Internet of Things,” 2014, Available at:
http://archive.ericsson.net/service/internet/picov/get?DocNo=
1/28701-FGB101973.

[7] S. Datta, C. Bonnet, “Smart M2M Gateway Based Architecture
for M2M Device and Endpoint Management,” IEEE
International Conference on Internet of Things (iThings), and
Green Computing and Communications (GreenCom), and
Cyber, Physical and Social Computing (CPSCom), 2014, pp.61-
68.

[8] A.A. Corici, R. Shrestha, G. Carella, A. Elmangoush, R.
Steinke, T. Magedanz. “A solution for provisioning reliable
M2M infrastructures using SDN and device management,”
International Conference on Information and Communication
Technology (ICoICT), 2015, pp.81-86.

[9] ETSI TS 102 690 “Machine-to-Machine communications
(M2M); Functional architecture,” v1.1.1, 2011.

[10] Open Mobile Alliance, “Enabler Test Specification for
Lightweight M2M Candidate Version 1.0 – 03 Feb 2015,”
OMA-ETS-LightweightM2M-V1_0-20150203-C

[11] L. Fuchun, Z. Qiansheng, C. Xuesong, “Bisimilarity control of
decentralized nondeterministic discrete-event systems,”
International Control Conference CCC, 2014, pp.3898-3903

204

