

SCADA system for monitoring and control of small

industrial producing unit
Hristo Nenov

1

Abstract – The topic of this paper is design and development of

SCADA system for remote autonomous production units

(Remote Automation Unit - RAU) from a "small farm" type. For

the purpose of developing the material base of the farm is

reduced to a limited number of controlled functional units which

could vary depending on the particular implementation on a real

production site.

Keywords – SCADA, MODBUS, Java, JPA, PLC.

I. INTRODUCTION

In modern economies it is almost impossible to imagine

industries where computers and machines have not have taken

control of a significant part of the production processes. The

main reason behind this is the need to increase the

competitiveness of production in the sector. The formula for

achieving this goal is to increase the production quantity and

reduce the production costs. The implementation of different

tools for mechanization of the production creates an

opportunity for that. Agriculture is no exception and modern

technologies are becoming more widely used in this industry.

The combination of the latest information technologies, global

information network Internet, more available control devices

and the use of renewable energy sources make the appearance

of modern agriculture - autonomous, more efficient and

predictable.

II. ARCHITECTURE OF THE SYSTEM

A. General scheme

Remote Automation Unit (RAU) from “small farm”

type consist the following modules:

1. Greenhouses with the following adjacent manageable

systems and sensors:

- Drip irrigation system with controllable valve;

-Sprinkling system with controllable valve;

-Ventilation;

-Measuring devices for air temperature;

-Measurement devices for humidity.

2. Wells - local inexhaustible sources with the following

adjacent manageable systems and sensors:

- Pumping systems;

- Sensors for water level.

3. Water storage reservoir - capacitive buffer source, which is

fed with water from local inexhaustible sources and supplies

water for the entire farm, the following adjacent manageable

systems and sensors:

-Pumping systems for water;

- Water level sensor.

For the purpose of real testing, simplified configuration

is selected and it is deployed as follows:

- Greenhouse with an individual drip irrigation system,

sprinkling system, ventilation system, temperature sensor and

an air sensor for humidity;

- Water storage supplying the greenhouse, with a

pumping system for water supply and one sensor for water

level;

- Two wells, each with a pumping system connected to

the water supply and water retaining with one sensor for water

level

B. Physical layer

Physical layer - covers the management and transfer

of data to and from various sensors and controllable devices

(sensors, valves, relays). This layer is designed to the

specific realities of production sites and goals.

B. Industrial Interface layer

The layer is implemented on one or more

programmable logic controllers (PLC) and includes logic for

gathering and initial processing of data to and from physical

sensors and controllable devices and providing them to the

layers of higher-level system. PLC interface has its own logic,

which is connected to the other layers of the system by

appropriate industrial protocols.

C. Application layer

The layer implements the application management

logic. It consist two aspects:

- Management of autonomous remote objects (small

farms);

- Business logic implemented on the Central System

Proxy Server.

D. Presentation layer

 The layer implements Human Machine Interface (HMI)

for developing SCADA systems. This is layer of the highest

level and provides a graphical interface for system operators

1Hristo Nenov is with the Faculty of Computer Science and

Automation at Technical University - Varna, 1 “Studentska”str.,

Varna 9000, Bulgaria, E-mail: h.nenov@tu-varna.bg.

217

through which they can monitor the working condition, to

read different measurements, to oversee occurred events,

alarms and archival data

E. Data layer

The layer implements mechanisms for temporary and

permanent storage of system data. It covers two aspects:

- Temporary storage of data within the RAU

(individual small farms)

- Permanent storage of data source RAU on a main

server.

Fig.1. General architecture of the system.

III. REALIZATION OF THE SYSTEM

Each Remote Automation Unit (RAU) is designed to

operate in unreliable network connectivity to the central

server, but it should provide reliable and trouble-free

autonomous management of the production process based on

the current configuration. In implementation

ScheduledExecutor Service (Java 1.7+) is used to start

services at regular configurable intervals:

- Activities of gathering information from the sensory

part of the system, primary processing and storage of

information in a local database

- Logic of autonomous management of physical

devices (pumps, valves, relays, etc.) based on a current

configuration to ensure the needs of production

- Generate and store events and alarms;

- Send the collected data, events and alarms to the

central server.

Data collection (Snapshots) and their replication to a

central server are performed by the SnapshotProducerService

and SnapshotConsumerService, working in parallel on RAU

and implementing the principle Producer / Consumer.

The exchange service for MODBUS contains abstract

controller class Modbus Controller, which implements

operations via MODBUS composite instance of

ModbusMaster - base library class in modbus4j. The heirs of

ModbusController implement different MODBUS modes -

TCP, RTU, ASCII, as appropriate instantiation type -

successor to ModbusMaster.

Fig.2. Service and Controller for data exchange over MODBUS.

Updating the status of RAU (Remote Automation Unit).

The internal state of RAU is managed by the class

DeviceManager, which maintains a collection of devices –

“Device”, which represent the inputs and outputs of the PLC.

Synchronization of values with those of the registers of the

PLC, is carried out by ModbusService, which uses class

ModbusController, encapsulating work with MODBUS.

ModbusService and DeviceManager sharing data for the state

through class Snapshot as the exchange is initiated only from

ModbusService.

Fig.3. Updating of state of RAU.

218

Model of automatic control of RAU.

Automatic control is realized by class AutomationController,

which applies logical chains of rules. Each type of rule

implements specific logic. This mechanism realizes design

pattern “Chain of responsibility” and relies on polymorphism

technique.

Fig.4. Model of automatic control of RAU

IV. TESTING OF THE SYSTEM

For testing purposes of the developed SCADA systems,

experimental arrangement that reflects the structure of a small

autonomous farm RAU and a central server are realized.

The experimental setting is made up of the following

components:

 - Central server on which the application runs

RauServer. Implemented on a separate computer that is

running Apache Tomcat with tuned Jersey Servlet, REST

service requests from RAU. On the same machine instance is

running for MySQL database on which stored data are

received from RAU;

- RAU (Remote Automation Unit), which was

launched as a standalone application (service) on a separate

computer. On the same machine is running instance of

MySQL database on which the data is temporarily stored until

it is sent to them to the central RauServer;

- MODBUS Controller.

Fig.5. Monitoring of sensors and deices in real time.

Fig.6. Monitoring of events in real time.

V. CONCLUSION

The system is fully operational. All modules are working

properly, generating and exchanging correct data. The main

objective of the study is achieved. There are a few aspects,

which are provided for future development.

REFERENCES

[1] David Geary, Cay S. Horstmann “Core JavaServer Faces”

3rd.Edition,May.2010.

[2] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides

“Gang Of Four - Design Patterns, Elements Of Reusable Object

Oriented Software - Addison Wesley

[3] Kevin Mukhar, Chris Zelenak, James L. Weaver, Jim Crume

JavaEE 5, From Novice to Professional

[4] Leonard Richardson, Sam Ruby –RESTful Web Services 2007.

[5] www.modbus.org

219

