

Graph Construction Algorithm for finding the Shortest

Path in a Maze
Milena Karova

1
, Ivaylo Penev

2
, Mariana Todorova

3
, Hristiyan Bobev

4
, Neli Kalcheva

5

Abstract – The paper presents implementation of an algorithm

for movement of a robot from a start position to a final

destination in a maze. The algorithm solves two main problems:

transformation of the maze into a graph and finding the shortest

path from an initial to a final position. The algorithm is

implemented as a part of an application, using already generated

text image, obtained by a picture of the maze from top. Walls

(obstacles), empty spaces, starting position of the robot and the

final destination are marked on the image. The maze is presented

as a bit set to form a graph which vertexes are valid positions of

the robot (i.e. the robot can rotate without touching a wall). The

algorithm finds the shortest path, marks movement commands

and saves them into a text file.

Keywords – Bit Set, Breadth First Search, Graph, Image,

Maze, Shortest Path

I. INTRODUCTION

The movement of a robot in a maze is a problem with many

applications into lots of areas. Therefore the problem is an

object of a broad research interest.

The main problems, which have to be solved, are

presentation of the maze in a proper form and implementation

of an algorithm for movement of the robot from initial

position to a final destination (exit) into the maze. In the

existing solutions the robot sensors or the camera of the robot

are usually used [1, 3, 4]. Using these devices only a part of

the maze could be shot. As a result information for the

obstacles (the walls) in the maze is obtained during the robot

movement. This approach is suitable, if the robot moves in an

unknown or dynamically changing environment, but has some

disadvantages:

- Requires permanent recalculation of the movement

trajectory;

- Troubles the application of effective algorithms for path

finding.

Various shortest path finding algorithms for robot

movement in a maze have been researched. Some of the

commonly used algorithms are: Dijkstra algorithm, A*

algorithm, breadth-first search (BFS), depth-first search (DFS)

and etc.

Dijkstra’s algorithm is one of the simplest algorithms.

Starting from the initial vertex where the path should start, the

algorithm marks all direct neighbors of the initial vertex with

the cost to get there. It then proceeds from the vertex with the

lowest cost to all of its adjacent vertices and marks them with

the cost to get to them via itself if this cost is lower. Once all

neighbors of a vertex are checked, the algorithm proceeds to

the vertex with the next lowest cost [2, 5].

A* is like Dijkstra’s algorithm in that it can be used to find

a shortest path. A* algorithm is the most popular choice for

path finding, because it’s fairly flexible and can be used in a

wide range of contexts. It is one of a family of graph search

algorithms that follow the same structure. These algorithms

represent the map as a graph and then find a path in that

graph. Depending on the environment, A* algorithm might

accomplish search much faster than Dijkstra’s algorithm [5].

Graph traversing in depth (Breadth-First-Search or BFS) is

algorithm for path searching in trees or graphs [6]. Searching

starts from a given vertex in the graph (or from the root in

case of a tree) and all the unvisited neighbors are visited first.

The algorithm is proposed by E. F. Moore, who used it for

finding the shortest path in a maze.

The algorithm, proposed in this paper, is called AlgoHris. It

solves two main problems:

- Construction of a graph using the image of the maze, shot

from above (for example by the camera of a drone);

- Finding the shortest path from an initial position to a final

destination in the graph.

The AlgoHris algorithm is compared to three other

algorithms: Backtracking, A* and Genetic Algorithm GAPP.

II. ALGORITHM ALGOHRIS FORMULATION

NSTRUCTIONS FOR THE AUTHORS

The AlgoHris algorithm considers an image of the maze.

The image is shot from above, for example by the camera of a

drone. Thus AlgoHris is integrated into an application for

shooting a maze from above, finding shortest path in the maze

and moving a robot from an initial position to a final

destination in the maze (Fig. 1).

Fig. 1. Schema of the whole project

1Milena Karova, 2Ivaylo Penev, 3Mariana Todorova, 5Neli Kalcheva

are with the Faculty of Automation and Computing at Technical

University of Varna, 1 Studentska str., Varna 9010, Bulgaria, E-mail:

mkarova@ieee.bg, ivailo.penev@tu-varna.bg,

mgtodorova@yahoo.com, n_kalcheva@abv.bg
4Hristiyan Bobev is a student with the Faculty of Automation and

Computing at Technical University of Varna, 1 Studentska str., Varna

9010, Bulgaria, E-mail: hristiyan_bobev@abv.bg.

225

mailto:mkarova@ieee.bg
mailto:ivailo.penev@tu-varna.bg
mailto:mgtodorova@yahoo.com
n_kalcheva@abv.bg
hristiyan_bobev@abv.bg

The proposed algorithm consists of two parts:

- Construction of a graph, presenting the maze;

- Finding the shortest path from an initial position to a final

destination, using the graph.

A. Graph construction age

The construction of a graph is an essential problem for the

robot movement. This problem is hard due to the limited

resources of the robot platform (computing power, memory).

The proposed AlgoHris algorithm uses presentation of the

maze as a set of characters 0 and 1, where 0 marks free

(possible) position for the robot movement and 1 marks busy

position (i.e. an obstacle or a wall). Fig. 2 presents a

simplified maze and a graph with an initial position and a final

destination.

Fig. 2. Construction of a graph for an example maze

The algorithm constructs unweighted, indirect graph,

formed by all pixels, which could be a valid position of the

robot in the maze. A position is valid, if all pixels up, down,

left and right in a distance equal to the robot size are free.

Such construction of the graph guarantees, that only the

possible routes are presented in the graph. Over this graph

various algorithms for path finding could be applied.

The graph construction algorithm uses radius of the circle,

described around the robot (Fig. 3). This presentation is used

for checking the valid positions of the robot in horizontal and

vertical direction.

Fig. 3. Robot presentation, using described circle

B. Check for valid position in horizontal direction

The valid positions in horizontal direction are checked

according to the radius of the described circle (i.e. according

to the robot size) (Fig. 4).

Fig. 4. Valid positions in horizontal direction

If there are no valid positions in horizontal direction, no

vertex is added to the graph for these positions (Fig. 5).

Fig. 5. No valid positions in horizontal direction

C. Check for valid position in vertical direction

The valid positions of the robot in vertical direction are

formed by OR operation of each pair of rows from the set,

presenting the maze (Fig. 6).

Fig. 6. Check for valid positions in vertical direction

226

If the OR operation of a pair of neighbor rows results in a

character 1, then an obstacle is available on this position and

the robot could not be in the position. No vertex is added to

the graph for the position (Fig. 7).

Fig. 7. An obstacle in vertical direction

If the OR operation of a pair of neighbor rows results in

characters 0 only, then the positions in vertical direction are

free. A vertex is added to the graph (Fig. 8).

Fig. 8. Example for valid positions in vertical direction

D. Finding the shortest path

If the described graph, containing only the possible

positions of movement, is available, an algorithm for finding

the shortest path could be applied over the graph.

The algorithm, proposed in this paper, implements breadth

first search. The algorithm finds the shortest path between an

initial and a final vertex, passing through least number of

visited vertices.

The algorithm uses the following data structures:

- Queue of the graph vertices;

- List of the visited vertices;

- List of the possible paths.

First the initial vertex is marked as visited and is added to

the queue. Afterwards the neighbor vertices are traversed. If a

neighbor vertex is not visited, in the field “previous” of the

vertex the number of the previous neighbor is written. The

vertex is marked as visited and is added to the queue. The

loop continues until the queue is not empty and the final

vertex is not visited.

Fig. 9 presents the algorithm execution for an example

graph.

Fig. 9. Algorithm for finding the shortest path in the constructed

graph

E. Programming implementation

The most challenging problem in the implementation of the

described algorithm is proper presentation of mazes with large

dimensions (e.g. 1600x1013 pixels). Such images have to be

quickly transformed to a graph, considering the limited

memory and computing power in the selected robot platform.

In the implementation of the AlgoHris algorithm the maze

is presented as a set of bits. Each bit is a structure of elements

with only 2 possible values: 0 (true) or 1 (false). A

programming class is realized, emulating an array of Boolean

elements. Each element reserves only one bit, which is eight

times less than the simple character data type. Each bit could

be accessed individually as in ordinary array.

III. EXPERIMENTAL RESULTS

The experiments are carried out in two directions:

- Comparing the times for graph construction for mazes

with various dimensions;

- Comparing the algorithm with three other algorithms,

using the same dimensions (height and width in pixels) of the

maze – Backtracking, A* and genetic algorithm GAPP.

227

In the first experiment the times for completing the separate

steps of the whole algorithm are presented in Table I.

TABLE I

EXPERIMENTAL RESULTS WITH IMAGES OF EXAMPLE MAZES WITH

DIFFERENT RESOLUTION

Width of

the maze

(pixels)

Height

of the

maze

(pixels)

Time

for graph

constructi

on (ms)

Time

for

shortest

path

finding

(ms)

480 304 45 5

480 304 45 5

480 304 46 6

1000 820 72 23

1000 820 73 24

1600 1013 105 52

The results show, that the implemented algorithm processes

relatively large image (1600x1013 pixels) and finds the

shortest path for less than 160 ms.

The data, obtained by the second experiment, are presented

on Fig. 10. In the case of small dimensions of the maze there

is no significant difference between the times for shortest path

finding. The genetic algorithm is comparatively slow and

inapplicable to large dimensions of the maze. AlgoHris

achieves shorter time than the Backtracking and even than the

A* algorithm when increasing the dimensions of the maze.

Fig. 10. The shortest path finding time for four different algorithms

On Fig. 11 the approximation function for AlgoHris is

shown. The function is

y = 23x – 18.667, R2 = 0.9845

The dependence between the time for path finding and

increasing the maze dimensions is proportional and the

algorithm is stable.

Fig. 11. Trendline correlation for AlgoHris

IV. CONCLUSION

The proposed AlgoHris algorithm for movement of a robot

in a maze has the following advantages in comparison to the

existing implementations of other algorithms:

- It uses an image of the maze, which makes possible fast

processing of the pixels in the image to find a path in the

maze;

- The maze is presented as a bit set, which significantly

increases the graph construction, containing only the possible

paths for movement of the robot.

Although in the current implementation AlgoHris uses the

breadth first search method to find the shortest path, other

methods for shortest path finding as Dijkstra’s algorithm and

A* algorithm could be effectively applied over the graph,

produced by AlgoHris.

The future work will consider implementation of algorithms

for finding paths in mazes, which are not shot in advance. The

camera or the sensors of the robot will be used. This way the

robot will be able to move in dynamically changing

environment.

REFERENCES

[1] Chauhan S., Bajpai A., Collision Free Autonomous Robot Path

Planning. International Journal of Engineering Research &

Technology, Vol. 1, Iss. 8, e-ISSN: 2278-0181, 2012.

[2] Hachour O., The proposed path finding strategy in static

unknown environments. International Journal of Systems

Applications, Engineering & Development, Iss. 4, Vol. 3, 2009.

[3] Hachour O., Path planning of Autonomous Mobile robot.

International Journal of Systems Applications, Engineering &

Development, Iss. 4, Vol. 2, 2008.

[4] Sedgewick R., Wayne K., Algorithms, 4th Ed., ISBN-13: 978-0-

321-57351-3, Pearson Education, 2011.

[5] Naumov V., Karova M., D. Zhelyazkov, M. Todorova, I. Penev,

V. Nikolov, V. Petkov, Robot Path Planning Algorithm,

International Journal of Computers and Communications,

ISSN: 2074-1294, NAUN, 2015.

[6] Correll N., Introduction to Autonomous Robots, 1st edition,

ISBN-13:978-1493773077, 2014.

228

