
Random Generation of Bent Functions on Multicore
CPU Platform

Miloš Radmanović1 and Radomir S. Stanković2

Abstract – Bent functions are an important class of Boolean
functions since they are used in different kinds of cryptographic
applications. Nevertheless, Bent functions are rare and difficult
to determine, especially in the case of functions with many
variables. During recent years, in order to improve its
performance, scientific software has been ported to multicore
CPU (Central Processing Unit) and GPU (Graphics Processing
Unit) platforms. Thus, this paper proposes a parallel
implementation of a well renowned algorithm for generation of
Bent functions on multicore CPU platform using the MPI
(Message Parsing Interface) framework. The algorithm is based
on random discovering of Bent functions on the reduced search
space in the Reed-Muller spectral domain. The experimental
results show that the random generation of Bent function on
multicore CPU platform is quite efficient in terms of the
computation time.

Keywords – cryptography, Boolean function, Bent function,
random generation, multicore CPU platform, MPI.

I. INTRODUCTION

Bent functions were introduced by Rothaus in 1976 as
Boolean functions with maximal nonlinearity [1]. They are
important due to the applications in many areas such as
combinatorics [2], coding theory [3], cryptography [4], and
logic synthesis [5].

It is well known that all Walsh spectral coefficients of Bent
functions have the same absolute value 2n/2, where n is
number of variables of the function. They have the maximum
possible value of nonlinearity equal to (2n−1 ± 2n/2-1), and they
only exist for even number of variables. Extensive work on
Bent functions has been done and various interesting results of
researches have been brought out in respect oftheir
generalization, construction, classification, etc.

Constructing of all Bent functions for a given number of
variables is possible just for a small number of variables (less
than 10) [6]. While general Bent functions are difficult to
discover, specific Bent functions can be easily described [7].
It is also well known that from given Bent functions, new
Bent functions with the same or greater number of variables
can be constructed [8]. All known methods for constructing
Bent functions are deterministic, and they do not provide any,
for example cryptographic, quality to the generated function.

There are different methods for random discovering of Bent
functions, and most of them are based on the Reed-Muller

expressions of Boolean functions [9]. A reason for
determining Bent functions in the Reed-Muller domain is the
efficiency of related algorithms in terms of time.

The algorithm for generation of Bent functions in Reed-
Muller domain takes as its input the minimum and maximum
number of non-zero coefficients in the Reed-Muller spectrum
of orders that the Bent functions are allowed to have. Since
the order of Bent functions is less or equal to n/2, where n is
the number of variables, possible search space for random
generation in the Reed-Muller domain is reduced.

Performing the related algorithm is a CPU time consuming
task, so we have developed two independent implementations
for a comparison, a single-core implementation using C++
and a multicore CPU implementation using MPI framework.
Implementations on multicore CPU platforms are recognized
as having the potential to considerably speedup or accelerate
computing intensive algorithms over their equivalent single
CPU core implementations [10]. The proposed multicore MPI
implementation exploits possibilities for parallelism that can
be found in the algorithm for generation of Bent functions in
the Reed-Muller domain.

In the case of the random generation of Bent functions, we
investigate this algorithm in the Reed-Muller domain for
different minimum and maximum numbers of non-zero
coefficients and for random possible orders of Bent functions.
In this paper, we studied how the algorithm performances
change when the multicore approach is applied. Restrictions
in the Reed-Muller domain greatly influence the performance
of the random generation of Bent functions. As the Boolean
function size increases, the number of calculations extremely
increases. For this reason we have experimented with small
sizes of Boolean function with strong restrictions in the Reed-
Muller domain.

The experimental results obtained on a multicore CPU
platform with 8 cores show performance speedups for some
benchmarks of maximum 4 times. This results confirm that
the application of the proposed implementation using MPI
framework leads to significant computational speedups over
traditional C++ implementations processed on single CPU.

 This paper is organized as follows: Section 2 shortly
introduces theoretical background. In Section 3, the algorithm
for discovering Bent functions in the Reed-Muller domain is
discussed. Section 4 offers some details for multicore CPU
implementation of this algorithm using MPI framework. The
experimental results are presented and discussed in Section 5.
The closing Section 6 summarizes the results of the research
reported in this paper.

1Miloš Radmanović is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
milos.radmanovic@elfak.ni.ac.rs

2Radomir S. Stanković is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
radomir.stankovic@gmail.com

239

II. THEORETICAL BACKGOUND

Definition 1 For a Boolean function f defined by the truth-
vector TnffF)]12(,),1(),0([−= K , the Walsh spectrum

Tn
wfwfwfWf SSSS)]12(,),1(),0([,,,, −= K is defined as [11]:

 FnWS Wf)(, = , (1)

where,

)1()(
1
WnW

n

i=
⊗= (2)

where ⊗ denotes the Kronecker product, and

⎥
⎦

⎤
⎢
⎣

⎡
−

=
11

11
)1(W , (3)

is the basic Walsh matrix.
The Walsh transform is a self-inverse transform up to the

constant 2-n that is used as the normalization factor when
defining the Walsh transform and its inverse. It is an
important mathematical tool for the analysis of Boolean
functions. It can be shown that with)1,1(− encoding of
function values, the Walsh coefficients are even integers in
the range n−2 to n2 .
Definition 2 A Boolean function f in)1,1(− encoding is
called Bent if all Walsh spectral coefficients fS have the same

absolute value 2/2n .
Note that a Bent functions can be characterized by the

positive polarity Reed-Muller form, leading to a
correspondence with the upper bound of the algebraic degree
of that form.

A positive polarity Reed-Muller form (PPRM) is an
exclusive-OR of AND product terms, where each variable
appears uncomplemented. Any Boolean function f can be
represented by the PPRM form in matrix notation defined as
[11]:

 FnRnXxxxf n)()(),,,(21 =K (4)

where

[]i
n

i
xnX 1)(

1=
⊗= (5)

and

⎥
⎦

⎤
⎢
⎣

⎡
⊗=
= 11

01
)(

1

n

i
nR (6)

where addition and multiplication are modulo 2,)(nR is the
positive Reed-Muller transform matrix of order n, and)1(R is
the basic positive Reed-Muller transform matrix.

The PPRM spectrum RMfS , is calculated as [10]:

 FnRS RMf)(, = . (7)

The elements of RMfS , are coefficients in the PPRM
espressions for any Boolean function [11]:

∑∑
≤<≤=

⊕⊕⊕⊕=
nji

nnjiij

n

i
ii xxxaxxaxaaxf

1
2112

1
0)(KK K (8)

where Σ denotes modulo 2 summation.
The algebraic degree or the order of nonlinearity of a Boolean
function [11] f is a maximum number of variables in a
product term with non-zero coefficient ka , where k is a subset
of }, . . . {1,2,3, n . When k is an empty set, the coefficient is
denoted as 0a and is called the zero order coefficient.
Coefficients of order 1 are n21 a,a,a K , coefficients of order 2
are 1)n-(n1312 a,a,a K , coefficient of order n is n12a K . The

number of all coefficients of order i is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
i
n .The PPRM

coefficients are divided into order groupings according to the
number of ones in the binary representation of its index in the
spectrum.

Algebraic degree of Bent functions is at most /2n for
4≥n [6]. Thus, the maximal number of PPRM coefficent of

Bent functions is:∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛2/

0

n

i i
n .

The number of Bent functions of a given number of
variables is not known. Therefore, the number of Bent

functions is at most
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

2/2
12 1-n

2 n
n

which is much less than all
Boolean functions

n22 [6].
For the PPRM transform, we need an inverse transform to

get back from the Reed-Muller domain. Since the Reed-
Muller transform matrix)(nR is a self-inverse matrix over
GF(2), the forward and inverse transform are given by the
same matrix [11].

The Walsh and Reed-Muller the transform matrices,
expressed in (3), and (6) respectively, can be factorized in
different ways yielding different fast transform algorithms, the
so-called FFT-like algorithms [11].

Figure 1 shows the elementary butterflies operations
(flow-graphs) for the Reed-Muller, and the Walsh basic
transform matrices, respectively.

The Cooley-Tukey class of algorithms is based on the
Good-Thomas factorization which originates from the
Kronecker product structure of the transform matrix [11].

Figure 2 shows the flow graphs of the fast Cooley-Tukey
spectral transform algorithm for the computation of the Walsh
spectrum of a three-variable logic function f given by the

Fig. 1. The elementary butterfly operations for the basic Reed-Muller
and Walsh transform matrices

240

truth- vector []TfffF)7()1(),0(,,K= . This algorithm is highly
exploited in computing the inverse PPRM transform for
discovering Bent functions in the Reed-Muller domain.

Fast spectral transform algorithm reduces computational
complexity of a spectral transform from O(N2) to O(Nlog2N),
it is an extremely effective tool in scientific computing.

III. RANDOM GENERATION OF BENT FUNCTIONS IN
REED-MULLER DOMAIN

The algorithm for the generation of Bent functions in the
Reed-Muller domain takes as its input the number of function
variables and the minimum and maximum number of non-
zero Reed-Muller coefficients of any order that is allowed.
Since the order of Bent functions is less or equal to n/2, the
number of non-zero PPRM coefficents is limited and the
positions of the coefficients in the PPRM spectrum are
restricted. For example, Table 1 gives the limitation of
number of the non-zero PPRM coefficents in relation to the
total number of coefficients of Bent functions for the number
of variables ranging from 8 to 14.

TABLE I
LIMITATION OF THE NUMBER OF THE NON-ZERO PPRM

COEFFICIENTS OF BENT FUNCTIONS

Num. of function
variables

Limitation / total
PPRM coefficients

8 163 / 256
10 638 / 1024
12 2510 / 4096
14 9908 / 16384

These restrictions ensure generation possibility, since they

certainly reduce the possible search space for random
generation in the Reed-Muller domain. As the Boolean

function size increases, the possible search space (see Table 1)
also extremely increases.

An outline of the algorithm for the generation of Bent
functions in Reed-Muller domain is given as Algorithm 1.

Algorithm 1
1: Set the number of function variables and the minimum

and the maximum number of the non-zero Reed-Muller
coefficients (the maximum number of coefficeinets should be
less than limitations).

2: Random generation of the number of the non-zero
coeficients in Reed-Muller spectrum (between minimum and
maximum).

3: Random generation of the positions of the non-zero
coeficients in Reed-Muller spectrum. Positions of coefficient
are related with the order of coefficients and their generation
is determinated by the number of ones in the binary
representation of the positions in the spectrum (the number of
ones is less or equal to n/2).

4: The computation of the truth-vector of a Boolean
function is done by using the flow graph of the inverse fast
PPRM transform of Reed-Muller spectrum.

5:)1,1(− encoding of a Boolean function.
6: Fast testing if the first Walsh coefficient has the absolute

value 2/2n . Otherwise go to the step 2.
7: Fast testing if the second Walsh coefficient have the

absolute value 2/2n . Otherwise go to the step 2.
8: Fast testing if the last Walsh coefficient have the

absolute value 2/2n . Otherwise go to the step 2.
9: Testing if all values of Walsh spectrum have the same

absolute value 2/2n . The computation of Walsh spectrum is
using the flow graph of the fast Walsh transform. Otherwise
go to the step 2.

10: Obtain random Bent Boolean function having extreme
nonlinearity properties.

IV. IMPLEMENTATION OF RANDOM GENERATION
OF BENT FUNCTIONS ON MULTICORE CPU

PLATFORM

For multi-core CPU architectures, the model of parallel
processing is based on a large number of processor cores with
the ability to directly address into a shared RAM memory.
This organization of computations allows to have a large
number of processes performing the same operations on
different data simultaneously. Process of communication
using a network is much slower than the process of
communication using the shared memory [12].

The algorithm for random generation of Bent function in
the Reed-Muller domain has a large degree of parallelism.
Steps 2 to 9 of the Algorithm 1 are computationally
independent and according to this, its implementation on
multicore CPU platform is convinient. A fundamental step in
parallelizing of this algorithm on multicore CPU is the
mapping to processor cores of arrays representing Reed-
Muller spectrums, that are used for random generation of
functions as well as Bent detection. It should be also noticed

Fig. 2. The flow graphs of the Cooley-Tukey spectral transform
algorithm for computing the Walsh spectrum of a tree-variable logic

function.

241

that random generation of Bent function can be very CPU
time consuming, since the computation of the inverse fast
PPRM transform (step 4 of the Algorithm 1) are exponential
in the number of variables in the function.

V. EXPERIMENTAL RESULTS

The MPI standard has become a widely used standard for
parallel programming framework [13]. For comparison
purposes, we developed referent single-core C++ and MPI
implementation on multi-core CPU platform of algorithm for
random generation of Bent function. Note that, for the largest
Boolean functions, computations were not performed on
multicore CPU, due to the computation time limitations of 30
minutes.

The computations are performed on an Intel i7 CPU at 3.66
GHz with 12 GBs of RAM. The quad-core CPU that is used is
hyper-threading, yielding 8 logical cores with 8 MB of smart
cache memory.

Table 1 shows computation performance of algorithm for
random generation of Bent function using referent single-core
C++ and MPI implementation on multi-core CPU platform.

The presented computational times represent average
values for ten executions of implementations for each number
of function variables and min. and max. of non-zero Reed-
Muller coefficients. From data in Table 1, it can be seen that,
on this multi-core CPU platform, for all the computations,
MPI implementation of the algorithm reduces computation
times when compared to the single-core C++ implementation.

VI. CONCLUSION

Methods for generating Bent functions are deterministic,
and they do not provide any, for example cryptographic,
quality to the generated function. The approach for finding a
non-deterministic Bent functions is most often based on
random discovering Bent function in Reed-Muller domain. It
should be noticed that finding the Bent function can be very
CPU time consuming, since the search space in Reed-Muller
domain are extrimely exponential in the number of variables
of the function. However, computing power can be
substantially increased through the exploitation of the
parallelism on multi-core CPU platform.

In this paper, we investigated parallelization of algorithm
for random generation of Bent function on multi-core CPU
platform. The parallel MPI implementation of this algorithm
is convinient, since the algorihm has a large degree of
parallelism. Experimental results confirm that exploiting
multi-core CPU platform can help improve the computation
performances of this algorithm.

We can conclude that, when processing time is a critical
parameter, the algorithm for random generation of Bent
functions in Reed-Muller domain should be performed on the
multi-core CPU platform. Future work will be on extension of
the proposed technique to various other multi-processing
platforms.

TABLE I
COMPUTATION PERFORMANCE OF ALGORITHM FOR RANDOM

GENERATION OF BENT FUNCTIONS USING REFERENT C++ AND MPI
IMPLEMENTATION

Num. of
function
variables

Min. and max
non-zero RM
coefficients

Avg. computation
time [s]

CPU mCPU
8 1 - 100 1.443 0,288
8 1 - 163 1,792 0,509

10 1 - 100 57,201 32,175
10 1 - 200 32.103 11.108
10 1 - 300 27.883 10.002
10 1 - 400 39.751 10.145
12 1 - 100 > 30 min. > 30 min.

ACKNOWLEDGEMENTS

The research reported in this paper is partly supported by
the Ministry of Education and Science of the Republic of
Serbia, projects ON174026 (2011-2016) and III44006 (2011-
2016).

REFERENCES

[1] O. Rothaus, “On Bent Functions”, Jourbal of Combin. Theory
Ser. A, vol. 20, pp. 300–305, 1976.

[2] T. Helleseth and A. Kholosha, “Bent Functions and Their
Connections to Combinatorics”, in S. Blackburn, S. Gerke, and
M. Wildon, editors, Surveys in Combinatorics 2013, pp. 91-126,
Cambridge University Press, 2013.

[3] O. Logachev, A. Salnikov, and V Yashchenko, Boolean
Functions in Coding Theory and Cryptography, American
Mathematical Society, 2012.

[4] N. Tokareva, Bent Functions, Results and Applications to
Cryptography, Academic Press, 2015.

[5] T. Sasao, J. Butler, and M. Thornton, Progress in Applications
of Boolean Functions, Morgan and Claypool Publishers, 2010.

[6] P. Langevin and G. Leander, “Counting all Bent Functions in
Dimension Eight 99270589265934370305785861242880”,
Designs, Codes and Cryptography, vol. 59, pp. 193-201, 2011.

[7] A. M. Youssef, and G. Gong, “Hyper-bent Functions”,
Advances in Cryptology-EUROCRYPT 2001, Lecture Notes in
Computer Science, vol. 2045, Springer, pp. 406–419, 2001.

[8] J. Seberry and X. Zhang, “Constructions of Bent Functions from
Two Known Bent Functions”, Australasian Journal of
Combinatorics, vol. 9, pp. 21-34, 1994.

[9] N. Y. Yu, and G. Gong, “Constructions of Quadratic Bent
Functions in Polynomial Forms”, IEEE Transactions on
Information Theory, vol. 52, no. 7, pp. 3291-3299, 2006.

[10] G. E. Karniadakis, R. M. Kirby, Parallel Scientific Computing
in C++ and MPI: A Seamless Approach to Parallel Algorithms
and their Implementation, Cambridge University Press, 2003.

[11] T. Sasao, and M. Fujita, Representations of Discrete Functions,
Boston: Kluwer Academic Publishers, 1996.

[12] C. Hughes, T. Hughes, Professional Multicore Programming:
Design and Implementation for C++ Developers, Wiley-
Interscience, 2011.

[13] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel Programming with the Message-Passing Interface,
MIT Press, 1999.

242

