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Abstract – Bent functions are an important class of Boolean 
functions since they are used in different kinds of cryptographic 
applications. Nevertheless, Bent functions are rare and difficult 
to determine, especially in the case of functions with many 
variables. During recent years, in order to improve its 
performance, scientific software has been ported to multicore 
CPU (Central Processing Unit) and GPU (Graphics Processing 
Unit) platforms. Thus, this paper proposes a parallel 
implementation of a well renowned algorithm for generation of 
Bent functions on multicore CPU platform using the MPI 
(Message Parsing Interface) framework. The algorithm is based 
on random discovering of Bent functions on the reduced search 
space in the Reed-Muller spectral domain. The experimental 
results show that the random generation of Bent function on 
multicore CPU platform is quite efficient in terms of the 
computation time. 
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I. INTRODUCTION 

Bent functions were introduced by Rothaus in 1976 as 
Boolean functions with maximal nonlinearity [1]. They are 
important due to the applications in many areas such as 
combinatorics [2], coding theory [3], cryptography [4], and 
logic synthesis [5].  

It is well known that all Walsh spectral coefficients of Bent 
functions have the same absolute value 2n/2, where n is 
number of variables of the function. They have the maximum 
possible value of nonlinearity equal to (2n−1 ± 2n/2-1), and they 
only exist for even number of variables. Extensive work on 
Bent functions has been done and various interesting results of 
researches have been brought out in respect oftheir 
generalization, construction, classification, etc.  

Constructing of all Bent functions for a given number of 
variables is possible just for a small number of variables (less 
than 10) [6]. While general Bent functions are difficult to 
discover, specific Bent functions can be easily described [7]. 
It is also well known that from given Bent functions, new 
Bent functions with the same or greater number of variables 
can be constructed [8]. All known methods for constructing 
Bent functions are deterministic, and they do not provide any, 
for example cryptographic, quality to the generated function.   

There are different methods for random discovering of Bent 
functions, and most of them are based on the Reed-Muller 

expressions of Boolean functions [9]. A reason for 
determining Bent functions in the Reed-Muller domain is the 
efficiency of related algorithms in terms of time. 

The algorithm for generation of Bent functions in Reed-
Muller domain takes as its input the minimum and maximum 
number of non-zero coefficients in the Reed-Muller spectrum 
of orders that the Bent functions are allowed to have. Since 
the order of Bent functions is less or equal to n/2, where n is 
the number of variables, possible search space for random 
generation in the Reed-Muller domain is reduced.  

Performing the related algorithm is a CPU time consuming 
task, so we have developed two independent implementations 
for a comparison, a single-core implementation using C++ 
and a multicore CPU implementation using MPI framework. 
Implementations on multicore CPU platforms are recognized 
as having the potential to considerably speedup or accelerate 
computing intensive algorithms over their equivalent single 
CPU core implementations [10]. The proposed multicore MPI 
implementation exploits possibilities for parallelism that can 
be found in the algorithm for generation of Bent functions in 
the Reed-Muller domain.  

In the case of the random generation of Bent functions, we 
investigate this algorithm in the Reed-Muller domain for 
different minimum and maximum numbers of non-zero 
coefficients and for random possible orders of Bent functions. 
In this paper, we studied how the algorithm performances 
change when the multicore approach is applied. Restrictions 
in the Reed-Muller domain greatly influence the performance 
of the random generation of Bent functions. As the Boolean 
function size increases, the number of calculations extremely 
increases. For this reason we have experimented with small 
sizes of Boolean function with strong restrictions in the Reed-
Muller domain. 

The experimental results obtained on a multicore CPU 
platform with 8 cores show performance speedups for some 
benchmarks of maximum 4 times. This results confirm that 
the application of the proposed implementation using MPI 
framework leads to significant computational speedups over 
traditional C++ implementations processed on single CPU.  

 This paper is organized as follows: Section 2 shortly 
introduces theoretical background. In Section 3, the algorithm 
for discovering Bent functions in the Reed-Muller domain is 
discussed. Section 4 offers some details for multicore CPU 
implementation of this algorithm using MPI framework. The 
experimental results are presented and discussed in Section 5. 
The closing Section 6 summarizes the results of the research 
reported in this paper. 
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II. THEORETICAL BACKGOUND  

Definition 1 For a Boolean function f defined by the truth-
vector TnffF )]12(,),1(),0([ −= K , the Walsh spectrum 

Tn
wfwfwfWf SSSS )]12(,),1(),0([ ,,,, −= K is defined as [11]: 
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is the basic Walsh matrix. 
The Walsh transform is a self-inverse transform up to the 

constant 2-n that is used as the normalization factor when 
defining the Walsh transform and its inverse. It is an 
important mathematical tool for the analysis of Boolean 
functions. It can be shown that with )1,1( − encoding of 
function values, the Walsh coefficients are even integers in 
the range n−2  to n2 . 
Definition 2 A Boolean function  f  in )1,1( − encoding is 
called Bent if all Walsh spectral coefficients fS have the same 

absolute value 2/2n .  
Note that a Bent functions can be characterized by the 

positive polarity Reed-Muller form, leading to a 
correspondence with the upper bound of the algebraic degree 
of that form. 

A positive polarity Reed-Muller form (PPRM) is an 
exclusive-OR of AND product terms, where each variable 
appears uncomplemented. Any Boolean function f can be 
represented by the PPRM form in matrix notation defined as 
[11]: 
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where addition and multiplication are modulo 2, )(nR is the 
positive Reed-Muller transform matrix of order n, and )1(R is 
the basic positive Reed-Muller transform matrix. 

The PPRM spectrum RMfS , is calculated as [10]: 

 FnRS RMf )(, = .                                         (7) 

The elements of RMfS ,  are coefficients in the PPRM 
espressions for any Boolean function [11]: 
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where Σ denotes modulo 2 summation. 
The algebraic degree or the order of nonlinearity of a Boolean 
function [11] f is a maximum number of variables in a 
product term with non-zero coefficient ka , where k is a subset 
of }, . . . {1,2,3, n . When k is an empty set, the coefficient is 
denoted as 0a  and is called the zero order coefficient. 
Coefficients of order 1 are n21 a,a,a K , coefficients of order 2 
are 1)n-(n1312 a,a,a K , coefficient of order n  is n12a K . The 

number of all coefficients of order i  is ⎟⎟
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coefficients are divided into order groupings according to the 
number of ones in the binary representation of its index in the 
spectrum. 

Algebraic degree of Bent functions is at most /2n for 
4≥n [6]. Thus, the maximal number of PPRM coefficent of 

Bent functions is:∑
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The number of Bent functions of a given number of 
variables is not known. Therefore, the number of Bent 

functions is at most 
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which is much less than all 
Boolean functions 

n22 [6]. 
For the PPRM transform, we need an inverse transform to 

get back from the Reed-Muller domain. Since the Reed-
Muller transform matrix )(nR is a self-inverse matrix over 
GF(2), the forward and inverse transform are given by the 
same matrix [11]. 

The Walsh and Reed-Muller the transform matrices, 
expressed in (3), and (6) respectively, can be factorized in 
different ways yielding different fast transform algorithms, the 
so-called FFT-like algorithms [11]. 

Figure 1 shows the elementary butterflies operations 
(flow-graphs) for the Reed-Muller, and the Walsh basic 
transform matrices, respectively.  

The Cooley-Tukey class of algorithms is based on the 
Good-Thomas factorization which originates from the 
Kronecker product structure of the transform matrix [11].  

Figure 2 shows the flow graphs of the fast Cooley-Tukey 
spectral transform algorithm for the computation of the Walsh 
spectrum of a three-variable logic function f given by the 

 

Fig. 1. The elementary butterfly operations for the basic Reed-Muller 
and Walsh transform matrices 

240



truth- vector [ ]TfffF )7()1(),0( ,,K= . This algorithm is highly 
exploited in computing the inverse PPRM transform for 
discovering Bent functions in the Reed-Muller domain. 

Fast spectral transform algorithm reduces computational 
complexity of a spectral transform from O(N2) to O(Nlog2N), 
it is an extremely effective tool in scientific computing. 

III. RANDOM GENERATION OF BENT FUNCTIONS IN 
REED-MULLER DOMAIN 

The algorithm for the generation of Bent functions in the 
Reed-Muller domain takes as its input the number of function 
variables and the minimum and maximum number of non-
zero Reed-Muller coefficients of any order that is allowed. 
Since the order of Bent functions is less or equal to n/2, the 
number of non-zero PPRM coefficents is limited and the 
positions of the coefficients in the PPRM spectrum are 
restricted. For example, Table 1 gives the limitation of 
number of the non-zero PPRM coefficents in relation to the 
total number of coefficients of Bent functions for the number 
of variables ranging from 8 to 14. 

TABLE I 
LIMITATION OF THE NUMBER OF THE NON-ZERO PPRM 

COEFFICIENTS OF BENT FUNCTIONS  

Num. of function  
variables 

Limitation / total 
PPRM coefficients  

8 163 / 256 
10 638 / 1024 
12 2510 / 4096 
14 9908 / 16384 

 
These restrictions ensure generation possibility, since they 

certainly reduce the possible search space for random 
generation in the Reed-Muller domain. As the Boolean 

function size increases, the possible search space (see Table 1) 
also extremely increases. 

An outline of the algorithm for the generation of Bent 
functions in Reed-Muller domain is given as Algorithm 1. 

 
Algorithm 1 
1: Set the number of function variables and the minimum 

and the maximum number of the non-zero Reed-Muller 
coefficients (the maximum number of coefficeinets should be 
less than limitations). 

2: Random generation of the number of the non-zero 
coeficients in Reed-Muller spectrum (between minimum and 
maximum). 

3:  Random generation of the positions of the non-zero 
coeficients in Reed-Muller spectrum. Positions of coefficient 
are related with the order of coefficients and their generation 
is determinated by the number of ones in the binary 
representation of the positions in the spectrum (the number of 
ones is less or equal to n/2).  

4: The computation of the truth-vector of a Boolean 
function is done by using the flow graph of the inverse fast 
PPRM transform of Reed-Muller spectrum.  

5: )1,1( − encoding of a Boolean function. 
6: Fast testing if the first Walsh coefficient has the absolute 

value 2/2n . Otherwise go to the step 2. 
7: Fast testing if the second Walsh coefficient have the 

absolute value 2/2n . Otherwise go to the step 2. 
8: Fast testing if the last Walsh coefficient have the 

absolute value 2/2n . Otherwise go to the step 2. 
9: Testing if all values of Walsh spectrum have the same 

absolute value 2/2n . The computation of Walsh spectrum is 
using the flow graph of the fast Walsh transform. Otherwise 
go to the step 2. 

10: Obtain random Bent Boolean function having extreme 
nonlinearity properties.     

IV. IMPLEMENTATION OF RANDOM GENERATION 
OF BENT FUNCTIONS ON MULTICORE CPU 

PLATFORM 

For multi-core CPU architectures, the model of parallel 
processing is based on a large number of processor cores with 
the ability to directly address into a shared RAM memory. 
This organization of computations allows to have a large 
number of processes performing the same operations on 
different data simultaneously. Process of communication 
using a network is much slower than the process of 
communication using the shared memory [12].  

The algorithm for random generation of Bent function in 
the Reed-Muller domain has a large degree of parallelism. 
Steps 2 to 9 of the Algorithm 1 are computationally 
independent and according to this, its implementation on 
multicore CPU platform is convinient. A fundamental step in 
parallelizing of this algorithm on multicore CPU is the 
mapping to processor cores of arrays representing Reed-
Muller spectrums, that are used for random generation of 
functions as well as Bent detection. It should be also noticed 

 

Fig. 2. The flow graphs of the Cooley-Tukey spectral transform 
algorithm for computing the Walsh spectrum of a tree-variable logic 

function. 
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that random generation of Bent function can be very CPU 
time consuming, since the computation of the inverse fast 
PPRM transform (step 4 of the Algorithm 1) are exponential 
in the number of variables in the function.  

V. EXPERIMENTAL RESULTS  

The MPI standard has become a widely used standard for 
parallel programming framework [13]. For comparison 
purposes, we developed referent single-core C++ and MPI 
implementation on multi-core CPU platform of algorithm for 
random generation of Bent function. Note that, for the largest 
Boolean functions, computations were not performed on 
multicore CPU, due to the computation time limitations of 30 
minutes. 

The computations are performed on an Intel i7 CPU at 3.66 
GHz with 12 GBs of RAM. The quad-core CPU that is used is 
hyper-threading, yielding 8 logical cores with 8 MB of smart 
cache memory.  

Table 1 shows computation performance of algorithm for 
random generation of Bent function using referent single-core 
C++ and MPI implementation on multi-core CPU platform. 

The presented computational times represent average 
values for ten executions of implementations for each number 
of function variables and min. and max. of non-zero Reed-
Muller coefficients. From data in Table 1, it can be seen that, 
on this multi-core CPU platform, for all the computations, 
MPI implementation of the algorithm reduces computation 
times when compared to the single-core C++ implementation.  

VI. CONCLUSION 

Methods for generating Bent functions are deterministic, 
and they do not provide any, for example cryptographic, 
quality to the generated function. The approach for finding a 
non-deterministic Bent functions is most often based on 
random discovering Bent function in Reed-Muller domain.  It 
should be noticed that finding the Bent function can be very 
CPU time consuming, since the search space in Reed-Muller 
domain are extrimely exponential in the number of variables 
of the function. However, computing power can be 
substantially increased through the exploitation of the 
parallelism on multi-core CPU platform.  

In this paper, we investigated parallelization of algorithm 
for random generation of Bent function on multi-core CPU 
platform. The parallel MPI implementation of this algorithm 
is convinient, since the algorihm has a large degree of 
parallelism. Experimental results confirm that exploiting 
multi-core CPU platform can help improve the computation 
performances of this algorithm.  

We can conclude that, when processing time is a critical 
parameter, the algorithm for random generation of Bent 
functions in Reed-Muller domain should be performed on the 
multi-core CPU platform. Future work will be on extension of 
the proposed technique to various other multi-processing 
platforms.  

 

TABLE I 
COMPUTATION PERFORMANCE OF ALGORITHM FOR RANDOM 

GENERATION OF BENT FUNCTIONS USING REFERENT C++ AND MPI 
IMPLEMENTATION  

Num. of 
function  
variables 

Min. and max 
non-zero RM 
coefficients 

Avg. computation  
time [s] 

CPU mCPU 
8 1 - 100 1.443 0,288 
8 1 - 163 1,792 0,509 

10 1 - 100 57,201 32,175 
10 1 - 200 32.103 11.108 
10 1 - 300 27.883 10.002 
10 1 - 400 39.751 10.145 
12 1 - 100 > 30 min. > 30 min. 
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