
Hadoop - Next Generation of Business Intelligence
Systems

Borivoje Milosevic1, Srdjan Jovkovic2 and Marko Jankovic

Abstract –The paper deals with the Hadoop software library
which provides a framework that enables distributed processing
of large data sets using computer clusters and a simple
programming model. It enables scaling of applications depending
on the available hardware on which it was built (on systems with
one server and a large number of servers where each has a local
area). The library is designed in such a way that failures can be
detected and treated at the application level. So, Hadoop
Framework has been developed for ad-hoc parallel processing
unstructured data, using MapReduce programming model and
the distributed file system HDFS (Hadoop Distributed
Filesystem). This paper will explain this new technology.

Keywords – Big Data, Hadoop, MapReduce, Hadoop
Distributed Filesystem, Java Virtual Machine.

I. INTRODUCTION

With the development of computer technology, it is now
possible to manage huge amounts of data that were previously
impossible to process and that could be used only with the
help of supercomputers and at great expense. System prices
have fallen as a result of new techniques and distributed
processing, which are currently in the focus. The real
breakthrough in Big data technology occurred when
companies such as Yahoo, Google, and Facebook came to the
conclusion that they could process large amounts of data
which their products generate. These companies have been
tasked to find new technologies that will enable them to save,
access, manage and analyze vast amounts of data in real time,
in such a way that they can process and fairly and properly
utilize the amount of data they have and include them in their
networks. Their solutions that have emerged have led to
changes in the market data management. In particular, the
innovations that MapReduce, Hadoop and Big Table brought
forth, proved to be a spark that led to a new generation of data
management. In support of this technology, the Apache
project is developing a number of projects related to open
source Hadoop with: Ambari, Avro, HBase, Cassandra,
Chukwu, Mahout, Hive, Pig, Spark. Cassandra's Hadoop is
distributed "NoSQL" database open source, which is
recognized as the basis for the following generation of
business intelligence systems, used by Ebay, Twitter and
many other companies whose characteristic is that they have
large amounts of active data. The largest known Cassandra
cluster has over 300 TB of data on more than 400 servers.

These technologies emphasize one of the most fundamental
problems, which is the ability to process large amounts of data
in an efficient and timely manner, in a manner that is cost
effective and does not require large expenditures.

The scope of what is now considered as a Big Data is wide,
and the definitions are unclear, even contradictory. The most
widely accepted definition of the term Big Data is derived
from the Meta Group analysis (now Gartner) which was
conducted in 2001. According to this definition, the term Big
Data stands for information resource large quantities, high
speed and high diversity of data that require new and
innovative methods of processing and optimization of
information, improving access to the contents of the data and
decision-making. This is the definition of so-called ''3V
Dimensions''': Volume, Variety, Velocity where the amount of
data goes up to the peta byte, and the variety of data to be
processed in real time is tight (structured, unstructured, text,
blogs, multimedia, etc.), Fig 1. According to some estimates,
about 80 percent of data is not of a numeric type, but they still
need to be involved in the procedure of analysis and decision-
making.

Fig. 1. 3D Big Data outlook

Also, when talking about the characteristics, it is important
to note two new dimensions:

Versatility: How the data is subject to change? In addition
to large quantities and speeds of data processing, data streams
can become quite spread with time. This can be explained by
a phenomenon in popular media, where one and the same
information is repeated many times. Such exceptions are very
difficult to handle, especially when you take into account the
recent rise in popularity of social networks.

Complexity: How difficult is data processing? When
dealing with large amounts of data, they typically come from
different sources. In many cases it is a fatal pair: filtering and
transforming a piece of information in any way. However, it
is necessary to connect the relationships between data and

1Borivoje Milosevic is with the College of Applied Technical
Sciences University Nis, A. Medvedeva 20, Nis 18000, Serbia, E-
mail: borivojemilosevic@yahoo. com

2Srdjan Jovkovic is with the College of Applied Technical
Sciences University Nis, A. Medvedeva 20, Nish 18000, Serbia, E-
mail: srdjansms11@gmail.com

251

hierarchies of data, otherwise the amount of data can get out
of control.

10.000 Credit card transactions are done every second in
the world. 340 million tweets are sent daily, which is some
4.000 tweets per second. Facebook has more than 901 million
active users who generate data daily, based on their mutual
interaction. More than 5 billion people are calling, sending
SMS, MMS, tweeting or surfing the Internet on mobile
devices.

II. MAP REDUCE PROGRAMMING

In contrast with traditional relational database–oriented
information which organizes data into fairly rigid rows and
columns that are stored in tables - MapReduce uses key/value
pairs. MapReduce is a programming model for processing
large data sets using parallel distributed algorithms in a
cluster. MapReduce program includes Map () procedure that
performs filtering and sorting (such as sorting students by
name in rows, one row for each name) and Reduce ()
procedure that performs the operation of aggregation (for
example, the number of students in each row). MapReduce
system manages the distributed servers, and generally the
whole process. The system performs different tasks
simultaneously, manages all communications as well as the
transfer of data between different parts of the system, at the
same time ensuring a system against redundancy and errors.
MapReduce libraries are written in different programming
languages. In-Memory machine provide high-performance
memory analytics processing. Free implementation is the
popular Apache Hadoop organizations.

The MapReduce workflow for such a word count function
would follow the steps as shown in the diagram below, Fig 2.:
1. The system takes input from a file system and splits it up

across separate Map nodes
2. The Map function or code is run and generates an output

for each Map node-in the word count function, every word
is listed and grouped by word per node

3. This output represents a set of intermediate key-value pairs
that are moved to Reduce nodes as input

4. The Reduce function or code is run and generates an output
for each Reduce node-in the word count example, the
reduce function sums the number of times a group of words
or key occurs

5. The system takes the outputs from each node to aggregate a
final view.

The reduction starts when the data is copied from the
mapping phase as soon as available. Reduction phase can start
only after the mapping phase is completed and the results are
collected.

 Reduction consists of three main phases:
1.Shuffle: Reduction is used for grouping the outputs from

mapping phase. At this stage the system, for each node that
runs the reduction, finds all relevant parts of the outputs that
nodes are produced in the mapping phase. Finding is
performed using HTTP.

2.Sort: The system groups the inputs to be reduced by using
their key. This needs to be done because the different nodes
that could do mapping, might produce the keys for the same
node for reduction process. The steps of mixing and sorting
are carried out simultaneously, that is, when acquiring the
output they are joined by together.

3. Reduce: At this stage, the method reducer (Object,
Iterable, Context) is performed, which calls for each clustered
pair <key, value collections>. The output of this phase is
usually entered in RecordWriter using
TaskInputOutputContext.write (Object, Object).

Fig. 3. MapReduce tasks

Fig. 2. MapReduce workflow

A MapReduce job is a unit of work that the client wants to

be performed: it consists of the input data, the MapReduce
program, and configuration information. Hadoop runs the job
by dividing it into tasks, of which there are two types: map
tasks and reduce tasks, Fig 3.

There are two types of nodes that control the job execution
process: a job-tracker and a number of task-trackers. The job-
tracker coordinates all the jobs run on the system by
scheduling tasks to run on task-trackers. Task-trackers run
tasks and send progress reports to the job-tracker, which keeps
a record of the overall progress of each job. If a task fails, the
job-tracker can reschedule it on a different task-tracker.

Hadoop divides the input to a MapReduce job into fixed-
size pieces called input splits. Hadoop creates one map task
for each split, which runs the user defined map function for
each record in the split. Having many splits means the time
taken to process each split is small compared to the time to
process the whole input. So if we are processing the splits in
parallel, the processing is better load-balanced if the splits are
small, since a faster machine will be able to process
proportionally more splits over the course of the job than a
slower machine.

Example of the MapReduce process can be seen in Fig. 4.

252

Fig. 4 MapReduce example

III. HADOOP DISTRIBUTED FILE SYSTEM

The Hadoop distributed file system (HDFS) is a distributed,
scalable, and portable file-system written in Java for the
Hadoop framework. Even though the Hadoop framework is
written in Java, programs for Hadoop need not to be coded in
Java but can also be developed in other languages like Python,
multi-threaded PHP or C++ .

VM Hadoop consists of the Hadoop Common package,
which provides filesystem and OS level abstractions, a
MapReduce engine (either MapReduce/MR1 or YARN/MR2)
and the Hadoop Distributed File System (HDFS). The Hadoop
Common package contains the necessary Java ARchive (JAR)
files and scripts needed to start Hadoop.

 A typical Hadoop environment consists of several
specialized software components: MasterNode, NameNode
and Worker Node, Fig 5.

Fig. 5 Hadoop environment for better Availability/Scalability

Master node: The majority of Hadoop deployments consist
of several master node instances. Having more than one
master node helps eliminate the risk of a single point of
failure. Here are major elements present in the master node:

 JobTracker: This process is assigned to interact with
client applications. It is also responsible for distributing
MapReduce tasks to particular nodes within a cluster.

 TaskTracker: This is a process in the cluster that is
capable of receiving tasks (including Map, Reduce, and
Shuffle) from a JobTracker.

 NameNode: These processes are charged with storing a
directory tree of all files in the Hadoop Distributed File
System (HDFS). They also keep track of where the file data is
kept within the cluster. Client applications contact
NameNodes when they need to locate a file, or add, copy, or
delete a file.

DataNodes: The DataNode stores data in the HDFS, and is
responsible for replicating data across clusters. DataNodes

interact with client applications when the NameNode has
supplied the DataNode’s address.

Worker nodes: Unlike the master node, whose numbers you
can usually count on one hand, a representative Hadoop
deployment consists of dozens or even hundreds of worker
nodes, which provide enough processing power to analyze a
few hundred terabytes all the way up to one petabyte. Each
worker node includes a DataNode as well as a TaskTracker.

A Hadoop cluster has nominally a single name-node plus a
cluster of data-nodes, although redundancy options are
available for the name-node due to its criticality. Each data-
node serves up blocks of data over the network using a block
protocol specific to HDFS. The file system uses TCP/IP
sockets for communication. Clients use remote procedure call
(RPC) to communicate between each other. Fig. 6 shows how
Hadoop runs a MapReduce job.

Fig. 6 How Hadoop runs a MapReduce job

The job submission process implemented by JobClient’s

submitJob() method does the following:
MapReduce job is sent to the execution by using the

Hadoop client application JobClient. The client application
requires major node (JobTracker), a new unique identifier of
the transaction, and calculates the partition of the input data.
Once the input data is divided into partitions and all the
parameters of the transaction have been checked, copied
JobClient business components in distributed file system in a
directory - the same transaction identifier is generated in the
first step. Components of the transaction include the JAR
archive with the program itself, with configuration files and
partitions of the input data.

After the components of the job became available in a
distributed file system, the job is saved in the internal queue
Job queue. Job Scheduler then retrieves the job and initializes
the tasks required for its execution. Initialized tasks include
the Map function (a Map function for each partition of the
input data) and Reduce tool (Reduce the number of functions
is defined in the configuration file).

Tasks performing is fully orchestrated with main nodes.
Before the execution of certain tasks, JobTracker must choose
which tasks belong to the work to be performed. Assumed job
scheduler chooses what first arrived in the queue. Once you

253

https://en.wikipedia.org/wiki/Apache_Hadoop#Hadoop_distributed_file_system
https://en.wikipedia.org/wiki/JAR_%28file_format%29

choose a job, JobTracker assigned tasks that make up the
selected free job creators of jobs. Tasktrackers run a simple
loop that periodically sends heartbeat method calls to the
jobtracker. Heartbeats tell the jobtracker that a tasktracker is
alive, but they also double as a channel for messages.
TaskTracker periodically reports its status main node. The
state includes information on free slots for Map and Reduce
tasks. Important optimization occurs in assignment to the Map
tasks. Map tasks are trying to allocate TaskTracker nodes on
which there are data processed by the administration assigned
task, thus avoiding the costly network communication, since
the data are in the local Map task. In order to optimize the
overlap of reading and data processing, framework Hadoop
runs more Map and Reduce tasks competitively at the nodes
workers.

After the TaskTracker node assigned to the task, it retrieves
the JAR archive with the program and launches a separate
instance of the Virtual Java Machine (JVM) for performing
the assigned task. MapReduce programs can take hours, so
workers nodes periodically provide information on the
progress of the execution. The job is finished when a
TaskTracker which executes the last task in the business told
the head node to end the execution of the assigned task.

Performing tasks is subject to hardware or software errors
that can manifest in various ways. One advantage of Hadoop
framework is to monitor the status of jobs and tasks, handling
errors and delays in the work and enabling execution of the
transaction in a precarious computer online environment. A
mistake by the worker node can cause an exception during the
execution of Map / Reduce job or some other error in the JVM
system. A common case is the phenomenon of slow workers
or workers at a standstill. When the main node receives
periodic status message alert workers with errors, it restarts
the failed task (avoiding the task start on the same node
worker where the error occurred). The master node receives
periodic general messages about the status of work
(tasktrackers pool). In addition, the availability of funds in the
system is very high using a distributed file system replication
blocks (eg. level of replication funds jobs is 10). In this way,
apart from the obvious benefits of reducing network
communication during the execution of tasks, system
reliability and data redundance is increased. Hadoop is not
currently considered a mistake in the head node that
represents a single point of system failure (single point of
failure). One possibility is to introduce redundancy protection
using the system to manage the ZooKeeper Internet nodes and
determine the primary (main) node.

HDFS stores large files (typically in the range of gigabytes
to terabytes) across multiple machines. It achieves reliability
by replicating the data across multiple hosts. With the default
replication value, 3, data is stored on three nodes: two on the
same rack, and one on a different rack. Data nodes can talk to
each other to rebalance data, to move copies around, and to
keep the replication of data high. HDFS is not fully POSIX-
compliant, because the requirements for a POSIX file-system
differ from the target goals for a Hadoop application.

 HDFS has a master/slave architecture. An HDFS cluster
consists of a single NameNode, a master server that manages
the file system namespace and regulates access to files by

clients. In addition, there are a number of DataNodes, usually
one per node in the cluster, which manage storage attached to
the nodes that they run on. HDFS exposes a file system
namespace and allows user data to be stored in files.
Internally, a file is split into one or more blocks and these
blocks are stored in a set of DataNodes. The NameNode
executes file system namespace operations like opening,
closing, and renaming files and directories. It also determines
the mapping of blocks to DataNodes. The DataNodes are
responsible for serving read and write requests from the file
system’s clients. The DataNodes also perform block creation,
deletion, and replication upon instruction from the
NameNode.

Hadoop does its best to run the map task on a node where
the input data resides in HDFS. This is called the data locality
optimization. It should now be clear why the optimal split size
is the same as the block size: it is the largest size of input that
can be guaranteed to be stored on a single node. If the split
spanned two blocks, it would be unlikely that any HDFS node
stored both blocks, so some of the split would have to be
transferred across the network to the node running the map
task, which is clearly less efficient than running the whole
map task using local data.

IV. CONCLUSION

Unlike Relational database management system - RDBMS,
Hadoop MapReduce model exhibits a proportional increase
because the Map and Reduce functions do not depend on the
size of the input data set, nor the size of the Internet PC
network to which the system is running. MapReduce model
processes the entire set of data during the execution of
queries, while RDBMS systems typically maintains additional
data structures (B tree), that speeds up executing queries or
updating small amounts of records, but significantly slows
down the update of most records in the database. In addition,
the MapReduce programming model is designed to handle
unstructured (or semi-structured) data such as text,
multimedia or binary data.

REFERENCES

[1] CS246: Mining Massive Datasets, Hadoop Tutorial, January 12,
2016, New York.

[2] A. Hammad, A. García, Hadoop tutorial, Karlsruhe Institut of
Technology, SSC, | September, 2014, Germany.

[3] Dhruba Borthakur, HDFS Architecture Guide, Copyright ©
2008 The Apache Software Foundation.

[4] Amr Awadallah, Introducing Apache Hadoop: The Modern
Data Operating System, Stanford EE380 Computer Systems,
2011, California, USA.

[5] Diana MacLean for CS448G, 2011, A Very Brief Introduction
to MapReduce, http://labs.google.com/papers/mapreduce.html

[6] MapReduce by examples, https://github.com/ andreaiacono/
MapReduce

[7] Ivan Validžić, Primena paralelne obrade u analizi društvenih
mreža, Fakultet elektronike i računarstva, Zagreb, Croatia,2015.

[8] Borivoje Milošević, Danica Milošević, In Memory baze
podataka, Zbornik Radova, Visoka Tehnička Škola Strukovnih
Studija - NIŠ, 2015.

254

https://en.wikipedia.org/wiki/Replication_%28computer_science%29
https://en.wikipedia.org/wiki/POSIX

