

Studying the process of software development through
intensive use of software tools

Violeta Bozhikova1, Mariana Stoeva2 , Dimitrichka Nikolaeva3, Zlatka Mateva4

Abstract – The paper focuses on the further development of

our approach to teach the discipline of Software Engineering
(SE) which is based on intensive use of software tools. The use of
software tools in the process of software development is a way to
increase both the effectiveness of teaching SE and the
effectiveness of the software engineer’s work. This approach was
used during the "Software Engineering" course labs at the
Technical University – Varna. The approach is intended to focus
students' attention on both the use of software tools in all phases
of software developmenton as well on the tools development. An
open for future development package of software tools is
developed for this case; its current structure is discussed in the
paper.

Keywords – Software Engineering, Software Engineering
education, tools for Software Engineering education, tools
supporting software development, etc.

I. INTRODUCTION

"Software engineering" (SE) is a basic course for bachelor
degree students in "Computer Science". It examines the
different models of software life cycle and covers all phases
and activities of the software production. The course is
difficult for the students because of its highly theoretical
nature. The popular SE books also do not easily attract the
students' attention, because of their theoretical-style approach.
As a result of everything mentioned above, students lose
interest in the Software Engineering discipline.

Based on our long teaching experience in the field of
Computer Sciences in the Technical University in Varna, we
believe that teamwork and tool supported project-oriented
exercises help students easily understand the theory included
in SE textbooks.

This paper is about the further development of our approach
to teach Software engineering discipline, which is based on
intensive use of software tools ([3] and [5]). An open for

future development package of software tools ([1] ÷ [5]) is in
the core of this approach; its current state is discussed in the
paper.

II. OUR APPROACH

In this section we discuss our approach to teach the
discipline of Software Engineering which is based on
intensive use of self developed software tools.

The discipline of Software Engineering is conducted in the
third year of the student’s curriculum. It brings 6 credits and
includes lectures, practical labs and course project. The
students work in teams of maximum 3 students, each student
has his different role in the team.

In the first week, all teams receive by the teacher a list with
practical software problems to resolve. The last week, each
team must submit implementation and documentation of the
entire list of software problems.

The student semester includes 15 weeks. The software tools
used in the different phases of the software life cycle by
weeks of semester are shown below in the Table 1:

TABLE I
THE SOFTWARE TOOLS USED IN THE DIFFERENT PHASES OF THE

SOFTWARE LIFE CYCLE BY WEEKS OF SEMESTER

Tool SE Phase Weeks
SCE Requirement

Analysis and
Specification

Week 1 ÷ Week 2

SR&A Operation &
Maintenance

Week 13 ÷ Week 14

VLT Design, Coding
and Testing

Week 6 ÷ Week 12

PMS Software Project
Management

Week 1 ÷ Week 15

DPAP-T Design, Coding
and Testing

Week 6 ÷ Week 12

UML-T Requirement
Analysis and
Specification

Week 3 ÷ Week 5

The teams work is based on evolutionary model for

software development. The package of software tools (fig.1)
used in solving the software problems is extensible and
currently consists of six tools, supporting different software
development activities (fig.2):

1Violeta Bozhikova is with the Department of Computer Sciences
and Engineering, Technical University of Varna, 1 Sudentska Str.,
Varna 9010, Bulgaria, E-mail:vbojikova2000@yahoo.com.

2Mariana Stoeva is with the Department of Computer Sciences
and Engineering, Technical University of Varna, 1 Sudentska Str.,
Varna 9010, Bulgaria, E-mail: mariana_stoeva@abv.bg.

3Dimitrichka Nikolaeva is a PhD student in the Department of
Computer Sciences and Engineering, Technical University of Varna,
1 Sudentska Str., Varna 9010, Bulgaria, E-mail:
dima.nikolaeva@abv.bg

4Zlatka Mateva is is with the Department of Computer Sciences
and Engineering, Technical University of Varna, 1 Sudentska Str.,
Varna 9010, Bulgaria, E-mail: ziz@abv.bg

263

Fig 1. The package of software tools

Fig. 2. Software tools in different phases of the software life cycle

• A tool that supports Software Project Management,

named PMS.
This tool was in details discussed in ([3] and [5]). Project

management software (PMS) is a term covering many types of
software, including scheduling, cost control and budget
management, resource allocation, collaboration software,
communication, quality management and documentation or
administration systems, which are used to deal with the
complexity of large projects.
• A tool (VLT) with lecture notes, exercises and tests on

programming.
VLT ([3] and [5]) is a case of educational software that

aims at helping the student study the relevant Microsoft.Net
programming language. Before doing the current laboratory
exercises, the students could read the language materials.
Choosing “Tests” pane the students could make the
corresponding quiz and evaluate their learning progress. The
teacher also can analyse the students' results, and get an
overall view for the progress of the students. The architecture
of the developed web-based tool provides instructors a
possibility to easily create and manage different course
materials. Although the tool doesn’t impose limitation about
the program language materials, the students are suggested to
use a .Net language.
• A tool (SCE) that supports the software cost estimation

([3], [4] and [5]).
This tool implements a hybrid approach for software cost

estimation [4], which is based on the classical models for
software cost estimation: Basic COCOMO, COCOMOII and
Function Points Analysis. Software estimation is the part of
project planning aimed at size estimation, effort, time, people

required etc. Software cost estimation process gives the
information needed to develop a software project’s schedule,
budget and assignment of personnel and resources.
• A tool for Software Re-structuring and Analysis

(SR&A) is integrated in the package ([2], [3] and [5]).
This tool could support mainly the maintenance activity.

Using this tool the students could analyze and re-structure the
software with the idea to improve its structure. The software
must be formally presented as a weighted oriented graph
G=(X, U), where the set of weighted nodes X (N=|X|) models
the software’s components (classes, modules, files, packages,
etc.) and U (the set of graph’s edges) presents the
dependencies between the components (e.g., procedural
invocation, variable access, etc.).

Fig. 3. The structure of DPAP-T

• A tool for software anti-pattern identification, named

DPAP-T.
DPAP-T is a web-based application that contains home

page and several sections representing different aspects of
design patterns and anti-pattern support (Fig. 3).

Home page aims to present the different sections of the
system with a short description and redirect the user to any of
them.

Encyclopedia: it is a section of the system, which aims to
provide information about design patterns and anti-patterns.
This section describes the problems that each design pattern
resolves; it describes the benefits of the use of design patterns
and the situations in which it could be used. Anti-patterns are
common solutions to problems that lead to negative
consequences. As a result, they produce a poor code structure.
The structure of the code is an important factor in maintaining
and adding new functionality in one system.

Generation of patterns: this section provides functionality
for design pattern generation (fig 4). An example of design
pattern (abstract factory) generation is presented in figure 5.

Section “Refactoring” provides methods for automatic code
refactoring. Refactoring is a reconstruction of the code with
the goal to improve its properties. The code is supplied as
input to the refactoring method. The method performs the
appropriate changes and returns as a result the modified code.
8 refactoring methods are provided by the tool: “Extract
Method”, “Inline method”, “Replace Temp with Query”,
“Encapsulate Field”, “Replace Magic Number with Symbolic
Constant”, “Replace Constructor with Factory Method” and
“Self Encapsulate Field”.

Identification of poorly built code: this section offers
methods for analysis of the code. It is supplied as input of a

264

particular method which identifies the poorly constructed code
sections. The poorly build code could be rewritten to be more
easily readable and to allow easy maintenance. 3 methods
(fig.3) for poorly built code identification are provided by the
tool: “Duplicated code”, “Too many parameters in a method”,
“Complicated If’s”. Several algorithms that improve the
software readability, software maintenance and the ability to
add new functionality are provided, but still are waiting to be
realized.

Fig. 4. Section “Generation of patterns”

Fig. 5. An example of design pattern (abstract factory) generation

• A tool for UML diagrams training and drawing, named

UML-T.

This software tool (UML-T) provides theoretical and
practical training for Unified Modeling Language (UML). It
contains 2 modules: “UML textbook” and “UML editor” -
(fig.6 and fig.7).

UML is a "universal" to the process of software
development language for visual modeling. The visual
modeling (visual modeling) is a method that:

- Use graphic (often based on graphs) model for
software visualization;

- Offers subject area modeling from different viewpoints
(perspectives);

- Supports almost all phases and activities of the
software development process; it can be used for both:
the development of new software and the evolution of
the existing software.

The diagrams are the most important building elements in
UML which can be used for the purposes of the:

- Specification of the system requirements and the
system architecture;

- System documentation;
- Model simulation (with automatically generated code);
- Model testing and validation;
- Communication between project participants, etc.

Fig. 6. UML textbook

UML-T supports the drawing of the basic UML diagrams

trough “UML editor” module. It provides an intuitive and
very simple interface. Compared with the existing commercial
and free UML tools, UML-T provides a training subsystem
(something as e-book for UML), supports the modeling of
Data Flow diagrams, but it is still in its initial phase of
development and does not yet support the entire set of charts
and Reverse/Forward Engineering options. As a conclusion,
many things in the current realization of UML-T wait to be
improved.

Fig. 7. UML editor

265

III. CONCLUSION

The paper focuses on the further development of our
approach to teach the discipline of Software Engineering
which is based on intensive use of software tools. An open for
future development package of software tools is in the core of
this approach; its further development is discussed in this
paper.

Our observation is that the effect of the approach
application for SE educational purposes is positive. The
student’s interest in SE discipline has grown. It is intended to
focus students' attention on both the use of software tools in
all phases of software developmenton as well on the tools
development. The students acquire useful theoretical and
practical knowledge in software analysis and specifications,
software cost estimation, software maintenance, software
development and so on.

Further work is needed in order to improve and to enrich
the teaching package: the existing tools could be improved
and unified; new functionalities could be aided; new tools
could be included in the package.

ACKNOWLEDGEMENT

The authors express their gratitude to the students Bozhidar
Georgiev and Nely Evgenieva, who participated actively in
the development of the package resources. The paper was
sponsored by two research projects in TU Varna: НП8 and
ПД6.

REFERENCES

[1] Violeta Bozhikova, Mariana Stoeva, Krasimir Tsonev, A
practical approach for software project management,
CompSysTech Conference 2009, Russe (to appear)

[2] V.Bozhikova, M. Stoeva, A. Antonov, V. Nikolov, Software
Re-structuring (An architecture-Based Tool), ICSOFT 2008,
Third Int’l Conference on Software and data Technologies,
pp.269-273, Porto, Portugal, 2008.

[3] Bozhikova V., N. Ruskova – “A Computer-Based Approach for
Software Engineering Teaching”, Proceedings of the
International Conference “E-Learning and the Knowledge
Society”, Berlin, GERMANY, 2009, pp. 161-166, ISBN 1313-
9207.

[4] Bozhikova V., M. Stoeva – “An Approach for Software Cost
Estimation”, Proc. of the International conference on computer
systems and technologies (CompSysTech’2010), International
Conference Proceedings series - V.471, София, Bulgaria, 2010,
pp.119 -124, ACM ISBN 978-1-4503-0243-2.

[5] Bozhikova V., M. Stoeva, N. Ruskova – “A tool package for
software engineering teaching”, Материальi XI
Международная конференция „Стратегия качества в
промьишлености и образовании”, Том 1, Варна, 2015, pp.
313-318.

266

