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Abstract – In this paper we have researched and simulated the 
mobile robot guidance and control in the environment full of 
obstacles, by using the potential fields method. We have 
considers a known environment where fixed potentials were 
assigned to the goal and the obstacles. We have applied a 
potential field’s method with one attraction potential assigned to 
the goal point and fixed repulsion points assigned to the 
obstacles. It moves successfully within different obstacle 
configurations (closely spaced obstacles), and it solves the 
problem with a local minimum occurrence.  
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I. INTRODUCTION 

The autonomous robot navigation problem consists of the 
determining the possible path between two points, an initial 
and a final (goal) point. The local navigation method should 
result in optimal (possibly shortest) path, avoiding the 
obstacles present in the working environment. Usually, the 
obstacles and the target could be fixed or dynamic. The goal 
of the path planning method is to determine the robot’s moves 
but to avoid collisions while reaching the objective. Potential 
fields are elegant solutions to the path finding problem [5]. 
From different authors, different approaches are taken to 
calculate appropriate field configurations. 

The robot uses functions defining potential fields at its 
position to calculate component vector [6]. The entire field 
doesn’t have to be computed - only the portion of field 
affecting robot will be computed for each behavior of the 
potential field; the sum of the vectors at the robot’s position 
will get resultant output vector. If the sum of the vectors is 
zero, that is the local minima; if the robot reaches local 
minima, it will just sit still. We can have issues with 
combining potential fields; the impact of update rates is that 
lower update rates can lead to “jagged” paths. If the robot is 
treated as a mass object, it cannot be expected to change 
velocity and direction instantaneously (cannot happen). We 
should find a solution for local minimum problem; if the 
global minimum is not guaranteed, we’ll need to apply 
something else than gradient descent. The functions should be 
chosen in such a way that global minimum can be guaranteed 
and the robot will escape the local minima. “Avoid-past” 
behaviors can be included – remembering where robot has 
been and bringing the robot to other places.  Numerical 

techniques, Random walk methods and Navigation functions 
[7], i.e. “navigation templates” have been combined to get the 
resulting vector that will avoid local minima. They give 
“avoid” behaviour a preferred direction and insert tangential 
fields around obstacles. 

This paper is organized as follows: in Section 2 we present 
the kinematic and dynamic model of the 4-wheeled mobile 
robot; in Section 3 - the Guidance and control method is 
presented, and in Section 4 - the trajectory planning algorithm 
using the potential field method. Finally we present the 
simulation results, our summary conclusions and directions 
for further work.  

II. MATHEMATICAL MODEL OF THE ROBOT 

In this section we will elaborate the robot movement in 
horizontal plane. We have considered a mobile robot with 4 
wheels (Ackerman drive), fixed rear wheels, and steering 
front wheels. Fig.2.1 shows the robot geometry while moving 
in 2D space. The kinematic and dynamic equations for the 
movement of the mobile robot can be found in [1,2,10,11], 
and here we’ll use these equations without derivation. 
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Fig.2.1 Kinematics of lateral vehicle motion:  

desired and actual trajectories of the mobile robot.  
 

In many cases, when the kinematics and dynamic model of a 
car-like robot is required - a bicycle model is used, where 
front and rear vehicles are presented with a single wheel, as in 
Fig.2.2 [1].   

The movement of the mobile robot in horizontal plane can 
be described as a system with 3-degrees of freedom– two 
translations of the mass center (С) along x and y axes, and 
one rotation around z  axis. Three coordinate systems are 
used: inertial coordinate system - fixed to the ground 
(global) ( ; , )e e eE O x y , coordinate system fixed to the robot 
body (local) ( ; , )B C x y and coordinate system attached to the 
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robot trajectory ( ; , )k kK C x y , where kx is axis - tangent, and 

ky is axis normal to the trajectory.  
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Fig.2.2 Bicycle model of lateral mobile robot dynamics  

 
The kinematic equations of the mobile robots are [1]: 
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where: V is velocity of center of gravity (c.g.) of the vehicle 
which is at point C, ψ is yaw angle (orientation angle with 
respect to global coordinate ex ), β  is vehicle slip angle,  
χ ψ β= +  is f rl l l= + . the angle of turn of the vehicle , δ  

is the steering angle of front wheels,  fl and rl  are distances 
of points A and B from c.g. of the vehicle, respectively.  

Dynamic equations can be derived from Fig. 2.2 and they 
are: 
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where m  and  J  are mass and inertial moment of the vehicle 
around the mass center, DF is driving force on the rear axis - 
along x axis, fF and rF  are resultant side forces on the front 
and the rear wheel. The first two equations in (2.2) define the 
forces balance along the system axes ( ; , )B C x y , while the 
third equation in (2.2), defines the moments’ balances around 
the z axis, normal to the plane Cxy . 

Complete model of mobile robot includes kinematic (2.1) 
and dynamic (2.2) equations, equations of non-holonomic 
constraints,  model of  the steering wheels actuator, and model 
of DC motor for driving force FD generation.  

The mobile robot model obtained by the upper equations is 
displayed in Fig.3.2. Input in the model are the control signals 

1u - for front wheels control, 2u - for velocity control. The 
output of the system is the complete state vector:  
 [ , , , , , ]Te e x Dx y V Fψ δ=x  and other variables that 
are dependent on the robot state. 
 
 

III. GUIDANCE AND CONTROL SYSTEM 

The robot guidance and control system should provide 
accurate trajectory following which can be known in advance, 
or can be computed in real time.  

Fig.3.1 shows the geometry during the referent trajectory 
following by the mobile robot.  This figure can help us in 
determining the kinematic equations and the errors in 
following. The point dC of the referent trajectory defines the 
required robot position given with the global 
coordinates ,ed edx y . The real position is determined by the 
point C (c.g. – center of gravity of mobile robot) whose 
coordinates are ,e ex y . The error in following can be 

represented in the projections in the global [ , ]
e e

T
E x ye e=e and 

in local coordinates [ , ]TB x ye e=e , and the transformation is: 

B BE B=e T e ,  or   [ , ] [ , ]
e e

T T
x y BE x ye e e e= T ,    

cos sin
sin cosBE ψ
ψ ψ
ψ ψ

⎡ ⎤
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where BET  is transformation matrix from global Е to local В 
coordinate system. 

One way to generate the referent trajectory, given the 
accelerations along the trajectory tangent and normal 
respectively- 

kx da  
ky da , is to apply the following equations: 
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The diagram of the control system is given in Fig.3.1.  The 
„Mobile robot“ block computes the equations,  the block 
„Steering wheel“ generates steering angle of front wheels, the 
block „Driving force“ generates the driving force FD , the 
block „Transformation to robot coordinates“computes the 
errors: 

, ,xe ed e ye ed e de x x e y y eψ ψ ψ= − = − = −  ,                   (3.4) 
transforming them in local coordinate system with (3.1), the 
„Reference trajectory“ block computes the referent trajectory. 
To obtain better guidance accuracy, especially when the 
trajectory needs fast maneuvers, together with the feedback 
controller - we must apply a feedforward controller based on 
the inverse robot model. The controller (its algorithm) 
generates control signal 1u to control the steering vehicles. To 
generate the signal 1u we have used a PID controller. The 
signal 2u defines the given velocity of the robot movement 
along the given trajectory.   

Based on the above model and the block diagram shown 
on Fig.3.1, we have developed simulation model in 
Matlab/Simulink which can be used for testing of the 
guidance algorithm. The generation of the referent trajectory 
in an obstacle environment is described in the following 
section.  
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Fig.3.1 Blok diagram of mobile robot guidance and control system 

IV. TRAJECTORY GENERATION BY POTENTIAL 
FIELDS METHOD 

Programming a single potential field - can be done by a 
repulsive field with linear drop-off:  

0180=directionV  

Ddfor
Ddfor

D
dD

Vmagnitude >
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⎪
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⎧ −

=
0

,  where D is the max range 

of the field’s effect.      (4.1) 

To generate potential field function U(q) for the robot - we 
will start with the force acting on a robot at point q: 

)()( qUqF −∇= , and environment is represented by potential 
function: ),( yxU . Force is proportional to the gradient of the 
potential function: 
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Environment is sum of the potential of fields: 
       )()()( qUqUqU repatt +=                  (4.3) 
 
where, )(qU att

 is attracting (goal) and )(qUrep
 is repulsing 

(obstacle) fields. 

Gradient of the potential function must be differentiable: 
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From above equations, artificial force field acting on a robot 
F(q), as the gradient of the potential field is given by:              
  

 )()( qUqF −∇=  
 

 )()()()()( qUqUqFqFqF repattrepatt ∇−−∇=+=
                         (4.5) 

Converting to robot control, we set the robot velocity 
),( yx vv , proportional to the force )(qF generated by the 

field, the force field drives the robot to the goal and the robot 
model is derived in section 3. 
 
Functions of attractive potential field will be: linear function 
of distance, quadratic function of distance and combination of 
the both. Linear function of distance is: 
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where attξ is a positive scaling factor, and goalqq − is the 
distance. 
- Quadratic function of distance is given by: 

2

2
1)( goalattatt qqqU −= ξ               (4.7) 

 Attracting force converges linearly towards 0 (goal): 

)()()( goalattgoalgoalattattatt qqqqqqqUqF −−=−∇−−=−∇= ξξ           (4.8) 

Repulsive Potential Field should generate a barrier around all 
the obstacles: strong, if close to the obstacle, or no influence - 
if far from the obstacle: 
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where )(qρ is the minimal distance to the obstacle from q ; 

0ρ is distance of influence of obstacle.  
Field is positive or zero and tends to infinity, as q gets closer 
to the obstacle: 
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For potential field path planning we have used harmonic 
potentials, since the robot is moving in an environment with 
fixed obstacles, ensuring that there are no local minima. 

V. SIMULATION RESULTS 

In accordance with block diagram in Fig.3.1 and equations 
that describe each module we developed the simulation model 
of the mobile robot in Matlab/Simulink.  

 
Fig. 5.1. Mobile robot control system model - developed in Simulink 

 
Referent trajectory in an obstacle environment is generated 

in the block Reference Trajectory Generator using potential 
field method. Fig. 5.2 shows how the mobile robot follows 
this referent trajectory. Obstacles in Fig.5.2 are presented by 
circles. 
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Fig.5.2. Referent trajectory following 
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Fig. 5.3. Robot course angle following during the movement along 
referent trajectory 
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Fig.5.4. а) Tracking error along х axis, b) Tracking error along y ax. 

VI. CONCLUSION 

In this paper we have researched and simulated the mobile 
robot guidance and control in the environment full of 
obstacles, by using the potential field’s method. The mobile 

robot has 4-wheels configuration, electric drive on the rear 
vehicles, and is directed from the front wheels (Ackerman 
control algorithm). We have simulated a movement in a 
horizontal (2D) plane and the robot is modeled as a 3-DOF 
system (three degrees of freedom).  

Our method uses functions defining potential fields at its 
position to calculate component vector. Only the portion of 
field affecting robot was computed for each behavior of the 
potential field; the sum of the vectors at the robot’s position 
gave the resultant output vector. We did not have issues with 
combining potential fields; the impact of update rates is that 
lower update rates can lead to “jagged” paths. The robot was 
treated as a mass object, it could not to change velocity and 
direction instantaneously (cannot happen). We found a 
solution for local minimum problem; if the global minimum is 
not guaranteed, we have chosen the functions in such a way 
that global minimum can be guaranteed and the robot will 
escape the local minima. “Avoid-past” behaviors were 
included – remembering where robot has been and bringing 
the robot to other places.  They gave “avoid” behaviour a 
preferred direction and inserted tangential fields around 
obstacles. 
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