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  Feature Extraction and Classification Using Minimal  
Curvature of 3D Mesh for Automatic Crater Detection 

 

Nicole Christoff1, 2,*

Abstract – In this paper the significance of tree classes of fea-
ture selection algorithms is examined. The features are extracted 
from 3D mesh data, generated from the Mars Orbiter Laser Al-
timeter (MOLA) for a classification task to automatically detect 
craters, while at the same time testing the performance of five 
classifiers. The key idea of this study is to examine the discrimi-
native power of the original values, hereafter called “pure” val-
ues, of a minimal curvature by only converting them in the range 
of grey scale. The experimental results with five different classi-
fiers show that better accuracy results are obtained over the fea-
tures selected from the grey scale image. The employed tech-
nique from computer vision usually used for face detection, is 
applied in the task of crater detection. 
 

Keywords – Mars Orbiter Laser Altimeter, 3D mesh, Automat-
ic craters detection, Machine learning. 

I. INTRODUCTION 

Observing and researching numbers and formation of cra-
ters, occuring on the surface of different celestial bodies is a 
big problem for astronomy. Its importance is connected to the 
estimation of age of the universe, the formation of stars and 
planets. The complexity of the problem arises when the im-
pact crater zones are very heterogeneous due to the distribu-
tion and size of the craters. To be able to solve partially this 
problem, different methodologies of geometric image analysis 
are proposed.  

Machine learning techniques have started being used on 2D 
surface images [3] and 2.5D [4], but there is no example of a 
method combining 3D mesh model as input and some type of 
classification method for recognition of crater rim. Some of 
the methods of impact crater detection, based on supervised 
algorithms, are neural network [5], support vector machine 
[6], Adaboost [2] and SparseBoost algorithm [7]. 

This paper provides an overview of three different classes 
of feature selection algorithms that can be employed in the 
task of automatic crater detection and an experimental setup 
with five different classifiers to test their discriminative pow-
er. The focus will be on proving that using only the minimal 
curvature information, calculated over the 3D meshes and 
converted to grey scale image, is enough to ensure good clas-
sification results.  

This paper is organized as follows: Section II describes in 
detail the data processing algorithm, Section III gives a brief 
overview of the three classes of feature extraction algorithms, 
Section IV present the classifiers that are going to be used in 
Section V for the experimental setup. The final section sum-
marizes the key points of discussion and concludes the paper. 

II. DATA AND DATA PRE-PROCESSING 

The 3D mesh data, employed in this research was generated 
from the Mars Orbiter Laser Altimeter (MOLA) with a resolu-
tion of 463.0836 m at the equator. The data is in equidistant 
cylindrical projection centered at (0°, 0°). The used sample is 
a rectangular region from Mars: Top: 13° N, Bottom: 0° N, 
Left: 25° W, Right: 0° W. It contains 5 328 000 vertices and 
10 646 272 faces (Fig. 1).  

 The first step of the sample data preparation is the 
computation of one of principal curvatures - the minimal 
curvature k2. The two Principal Curvatures, k1 and k2 at a 
point p ∈ S, S⊂ R3 are the eigenvalues of the shape operator at 
that point. The k1 and k2 are respectively the maximum and 
minimum of the Second Fundamental Form. The principal 
curvatures measure how the surface bends by different 
amounts in different directions at that point [8].  

The second step is to prepare a training set of positive and 
negative samples of craters. In this work, the Barlow 
catalogue [1] is used. It contains 459 craters for this area. 
Same number square blocks containing at least one crater, 
were extracted from the minimal curvature map as positive 
samples. The widths of the blocks are 1.5 times that of the 
crater diameter plus a constant, due to the calculation of error 
of displacement, equal to 10 pixels (Fig. 2. A). All the 
samples are resized to 20 x 20 pixels with the bilinear 
interpolation method (Fig. 2. B).  

The same number of square blocks (459) are also randomly 
extracted containing no craters as negative samples. A second 
training set is prepared, where the values of minimal curva-
tures are converted into a quantified grayscale information k2G 
between 0 and 255 using the minimum and maximum curva-
tures k2min and k2max (Fig. 3 A and B). 

 

PhD student at: 1Faculty of Telecommunications at Technical
University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000, Bulgaria, and
2Aix-Marseille Université, CNRS, LSIS UMR 7296, France, E-mail:
nicole.christoff@tu-sofia.bg 

 

Fig. 1. The piece of land of Mars 



45 

III. FEATURE EXTRACTION 

Tree classes of features are calculated to train and test dif-
ferent classifiers: Local Binary Pattern operator (LBP), Haar-
like and Scaled Haar-like feature. The LBP and Haar are an 
example of a typical computer vision computation pipeline for 
face recognition, used for dimension reduction preprocessing 
steps. 

A. LBP Cascade Classifier 

The Local Binary Pattern operator (LBP) was first intro-
duced by [9] for byte adaptation of a previous study done by 
[10] and is a powerful texture descriptor. Texture is defined as 
a function of spatial variations in the pixel intensity of an im-
age. The idea behind this operator is that common features, 
such as edges, lines, point, can be represented by a value in a 
particular numerical scale. As a result, 2124 features for each 
resized sample are obtained. 

B. Haar-Like Cascade Classifier 

Haar-like features are attributes extracted from Region of 
Interest (ROI) used in pattern recognition. The utilization of 
these features instead of handling gray or color level of the 
pixels directly was proposed in [11]. First, the pixel values 
inside the black area are added together; then the values in the 
white area are summed. Only eight types of square masks are 
used to extract feature, as seen in Fig. 4. Then the total value 
of the white area is subtracted from the total value of the black 
area. This result is used to categorize sub-regions. A total of 
2048 features are obtained for each resized sample. 

The weak classifiers become strong classifiers when ar-
ranged in Haar-like cascade. They are able to detect structures 
despite illumination, color or scale variation. This method is 
one of the most popular techniques for face detection, firstly 
described by Viola and Jones [12]. 

 
C. Scaled Haar-like Feature 

It is a variant of Haar-like feature. This feature is proposed 
by [2], which use the fact that large craters are usually deeper 
than small ones, and this means most of the Haar-like feature 
values of the large craters are larger than those of small ones. 
The scaled Haar-like feature is computed by division of the 
Haar-like feature value with a coefficient of the resolution of 
the sample to adjust the Haar-like features for large craters 
and small craters to the same scale. The number of scaled 
Haar-like features for all resized sample is the same as that of 
Haar-like features. 

IV. TRAINING DIFFERENT CLASSIFIERS 

Five popular classifiers are used in this study. 

A. K-Nearest Neighbours Algorithm (KNN) 

Feature extraction is performed on raw data prior to apply-
ing KNN algorithm on the transformed data in feature space. 
A commonly used distance metric for continuous va-
riables is Euclidean distance. Cosine similarity is very effi-
cient to evaluate, especially for sparse vectors, as only the 
non-zero dimensions need to be considered. 

 
B. Support Vector Machine (SVM) 

SVM is a classier with good generalization power that uses 
the features extracted by the descriptor. SVM works basically 
by finding an optimal hyper plane that best separates the two 
classes. Kernel functions can be used with SVM in order to 
enable the classifier to deal with non-linearly separable 
classes. These functions modify the feature space trying to 

 
 

 
Fig. 2. Positive sample "pure": (A) Window with size equal to 1.5 

times diameter of the crater plus constant equal to 10 px,  
(B) The same sample, resampled to 20x20 pixels 

 

Fig. 4. Eight type of masks are used for Haar-like feature extraction 

 
Fig. 3. Positive sample in grey scale: (A) Window with size equal to 

1.5 times diameter of the crater plus constant equal to 10 pixels,  
(B) The same sample, resampled to 20x20 pixels 
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transform it into a linear separable problem. Several types of 
kernel functions are commonly used: uniform (linear), Gaus-
sian (Radial Basis Function (RBF)) [13], quadratic [14] and 
cosine. 

C. Decision Tree 

Decision Trees are a non-parametric supervised learning 
method used for classification and regression. The goal is to 
create a model in the form of a tree structure. It breaks down a 
dataset into smaller and smaller subsets while at the same time 
an associated decision tree is incrementally developed. The 
final result is a tree with decision nodes and leaf nodes. A 
decision node has two or more branches. The leaf node 
represents a classification or decision [15]. 

D. AdaBoost 

Boosted Trees incrementally builds an ensemble by training 
each new instance to emphasize the training instances pre-
viously mis-modeled. A typical example is AdaBoost. It is an 
approach to machine learning based on the idea of creating a 
highly accurate prediction rule by combining many relatively 
weak and inaccurate rules. 

E. Bagged Tree 

Bagging decision trees, an ensemble method, builds mul-
tiple decision trees by repeatedly resampling training data 
with replacement, and voting the trees for a consensus predic-
tion. 

V. RESULTS 

For the tests the k-fold cross validation procedure is ap-
plied. 918 total samples of 918 are divided into 10 groups of 
equal size. Five different classifiers are trained each using 9 
groups, holding out each of the groups. For each of the four 
classifiers, the group left out is tested. The 10 test results are 
averaged. All samples get to be used for both training and 
testing. The result is unbiased and with minimum variance. 

The number of true positive detections is represented with 
TP (CR - detected craters, which are real craters and NCR – 
zones, with no craters), FP represents the number of false pos-
itive detections (CR – detected craters are not actual craters 
and NCR – detected no crater zones are not actual no craters 
zones), FN represents the number of false negative detections 
(CR – un-detected real craters and NCR – undetected negative 
samples) and TN represents the number of true negative de-
tections (CR – for positive samples and NCR – for no crater 
zones). 
The best scenario is obtaining larger TP CR and TP NCR and 
smaller FP (CR and NCR). There are 459 positive and same 
number (459) negative samples. The best detection rate, for 
original values of minimal curvature, using SVM with qua-
dratic kernel function respectively TP CR: 418, FN CR: 42, 
TP NCR: 427 and FN NCR: 31. A good TP CR results are 
obtained using SVM (Gaussian), but the number of FP CR 
increase two times (see Table I). 

TABLE I 
CONFUSION MATRIX FOR DIFFERENT CLASSIFIERS UNDER "PURE" 

10 fold cross validation 

 

ACTUAL  
 

       PREDICTED 
TP 
CR 
 

TN 
CR 

FN 
CR 

 

FP 
NCR 

TP 
NCR 

 

TN 
NCR 

FN 
NCR 

 

FP 
CR 

KNN 

E
uc

li
de

an
 

1 130 330 373 85 
3 63 397 449 9 
5 33 427 458 0 
7 25 435 457 1 
9  18 442 458 0 
11 14 446 458 0 

C
os

in
e 

1 188 272 369 89 
3 265 195 446 12 
5 262 198 454 4 
7 249 221 455 3 
9  245 215 456 2 
11  236 224 456 2 

SVM 

Linear 420 40 413 45 
Quadratic 418 42 427 31 

Cubic 401 59 431 27 
Gaussian 426 34 382 76 

Decision tree 345 115 374 84 
Ensemble 
classifiers 

AdaBoost 407 53 429 29 
Bagged tree 402 58 406 52 

 
 

TABLE II 
CONFUSION MATRIX FOR DIFFERENT CLASSIFIERS UNDER "GRAY" 

 

10 fold cross validation 

 

ACTUAL  
 

       PREDICTED 
TP 
CR 
 

TN 
CR 

FN 
CR 

 

FP 
NCR 

TP 
NCR 

 

TN 
NCR 

FN 
NCR 

 

FP 
CR 

KNN 

E
uc
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an
 

1 230 230 413 45 
3 229 231 439 19 
5 221 239 443 15 
7 216 244 443 15 
9 213 247 447 11 
11 209 251 445 13 

C
os

in
e 

1 275 185 391 67 
3 375 85 453 5 
5 389 71 450 8 
7 389 71 451 7 
9 394 66 451 7 
11 395 65 449 9 

SVM 

Linear 427 33 420 38 
Quadratic 452 8 442 16 

Cubic 455 5 440 18 
Gaussian 454 6 452 6 

Decision tree 403 57 417 41 

Ensemble 
classifiers 

AdaBoost 428 32 251 207 
Bagged tree 458 2 445 13 
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Using greyscale values of minimal curvature, better de-
tection rate is obtained using SVM with Gaussian kernel func-
tion respectively TP CR: 454, FN CR: 6, TP NCR: 452 and 
FN NCR: 6. The best TP CR (458) is resulted, which is one of 
the challenges in astrophysics, using Bagged tree, but the 
number of FP CR increase two times (13) (see Table II). 
 In Fig. 5 is presented a comparative study with obtained 
accuracy results. The bins, colored in blue represent results for 
k2G “grey” training set and with green – k2 “pure” training set. 
Best accuracy detection rate for “pure” values of minimal 
curvature, we obtain using Bagged trees - 98.4%. For the 
greyscale values of k2, best accuracy of 92.0% is obtained 
with SVM, using quadratic kernel function (Fig. 5). 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have presented tree different methods for 
feature extraction from grey level image of minimal curvature, 
extracted from 3D mesh data, generated from the MOLA. We 
presented an overview of the ensemble of classifiers used to 
automatically detect craters on the surface of Mars. Thanks to 
the experimental results, we can conclude that the best per-
forming classifier for crater detection is Bagged tree if we 
pass from RGB to grey scale image representation. 

As future work, we plan to test those features on other types 
of calculated curvatures. Another step is to add the neural 
network back propagation of error classifier to the experimen-
tal setup. 
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