

451

Arduino-based Wireless Sensor Nodes
Milen Todorov1, Boyanka Nikolova2, Georgi Nikolov3, Milena Terzieva4

Abstract – ZigBee is one of the main standards for low-data-
rate, short-range communications used in wireless sensor
networks. The main advantages of this standard are mesh
networking, low-power, low-complexity, reliability and operation
on unlicensed frequency band, available Worldwide. In this
paper is presented an approach to develop low-cost sensor nodes
using an open-source hardware and software platforms, such as
Arduino.

Keywords – Arduino, IEEE 802.15.4, Wireless Sensor
Networks, XBee, XCTU, ZigBee.

I. INTRODUCTION

While numerous sensors are connected directly, through the
use of existing local area networks, with controllers and data
processing stations, the numbers of sensors that send
information wirelessly are increasing. This is important
because many network applications require hundreds or
thousands of sensor nodes, often located in remote and
inaccessible areas. Therefore the sensor node, except the
sensor element should have processing and data storage
capabilities. Sensor networks are ideal for all forms of
environmental monitoring. Due to the sensors’ small size, low
energy requirements, and low-cost, implementers can install
them at sites or at specific stations or machines for precise
reporting. Sensors can be used to measure observations at key
locations, the measured data is sent to a computer or even to a
server in the cloud.

The microcontroller platform in this paper is Arduino. This
is an open-source electronics platform based on hardware and
software. The most significant advantages of Arduino over
other systems are:
 Relatively inexpensive compared to other microcontroller

platforms;
 Cross-platform – the Arduino Software (IDE) runs on

different operating systems;
 Simple and clear programming environment;
 Open source and extensible software. The language can be

expanded through C++ libraries;
 Open source and extensible hardware – circuit designers can

make, extend and improve the module.

ZigBee is a standard that defines a set of communication
protocols for low-data-rate short-range wireless networking.
The standard is developed by the ZigBee Alliance, which has
hundreds of member companies, from the semiconductor
industry and software developers to original equipment
manufacturers (OEMs) and installers. The ZigBee standard
uses IEEE 802.15.4 as its Physical Layer (PHY) and Medium
Access Control (MAC) protocols. IEEE 802.15.4 uses
spreading methods to improve the receiver sensitivity level,
increase the jamming resistance, and reduce the effect of
multipath. The signal spreading by the transmitter and
despreading by the receiver reduce the effect of the interferers
[1-3].

II. SENSOR NODE CONFIGURATION

Arduino boards do not come with ZigBee connectivity. The
proposed option in this paper is to use a shield. A shield is
basically an extension board that can be placed on top of the
Arduino board. Shields are used to extend the hardware
features of the Arduino. Another option is to use an external
component, mounted on a breakout board, which are
connected to Arduino. The used digital relative humidity and
temperature sensor RHT03 measures the concentration of
water (moisture) in the air. Humidity sensors react to these
phenomena and generate a voltage that the microcontroller of
Arduino read and calculate a value on a scale. A basic, low-
cost humidity sensor is the DHT-22. The DHT-22 is designed
to measure temperature as well as humidity. It generates a
digital signal on the output (data pin). It should be used to
track data at a reasonably slow rate (no more frequently than
about once every 3 or 4 seconds). When this sensor generates
data, that data is transmitted as a series of high and low
voltages that the microcontroller reads and use to form a
value. In this case, the microcontroller reads a value 40 bits in
length. The first two bytes are the value for humidity, the
second two are for temperature, and the fifth byte is the
checksum value to ensure an accurate read [4]. DHT-22
temperature and humidity sensor requires pull up resistor to
pull up the data value to the voltage level to ensure a valid
logic on the wire. The sensor is temperature compensated and
calibrated in accurate calibration chamber and the calibration-
coefficient is saved in type of programme in one-time
programmable (OTP) EPROM. When the sensor is detecting,
it will read this coefficient from memory [5]. The sensor uses
its own protocol.

The XBee and XBee-PRO Radio Frequency modules meet
IEEE 802.15.4 standards and support the needs of low-cost,
low-power wireless sensor networks. The modules require
minimal power and provide reliable delivery of data between
devices. The modules operate within ISM 2.4 GHz frequency
band and are pin-for-pin compatible with each other [6, 7].
The XBee/XBee-PRO modules interface to a host device

1Milen Todorov is with the Faculty of Telecommunications at
Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,
Bulgaria

2Boyanka Nikolova is with the Faculty of Telecommunications at
Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,
Bulgaria, E-mail: bnikol@tu-sofia.bg

3Georgi Nikolov is with Faculty of Electronic Engineering and
Technologies at Technical University of Sofia, 8 Kl. Ohridski Blvd,
Sofia 1000, Bulgaria

4Milena Terzieva is a PhD student from the Faculty of
Telecommunications at Technical University of Sofia, Bulgaria

452

through a logic-level asynchronous serial port. Through its
serial port, the module can communicate with any logic and
voltage compatible UART or through a level translator to any
serial device (e.g. RS-232, USB interface board). By default
modules operate in Transparent Mode. In this mode, the
modules act as a serial line replacement – all UART data
received through the DI pin is queued up for RF transmission.
When RF data is received, the data is sent out the DO pin. If
the module can not immediately transmit, the serial data is
stored in the DI Buffer. The data is packetized and sent at any
RO timeout or when maximum packet size are received. If the
DI buffer becomes full, hardware or software flow control
must be implemented in order to prevent overflow – loss of
data between the host and module. Application Programming
Interface (API) Operation is an alternative to the default
Transparent Operation. The frame-based API extends the
level to which a host application can interact with the
networking capabilities of the module. When in API mode, all
data entering and leaving the module is contained in frames
that define operations or events within the module. The API
provides alternative means of configuring modules and
routing data at the host application layer. A host application
can send data frames to the module that contain address and
payload information instead of using command mode to
modify addresses [8]. By default XBee modules are
configured to operate within a peer-to-peer network topology,
i.e. modules are synchronized without use of master/server
configurations. A peer-to-peer network can be established by
configuring each module to operate as an End Device,
disabling End Device Association in all modules and setting
ID and CH parameters to be identical across the network.

III. NETWORK DEPLOYMENT

Fig. 1 shows the discovered radio module that is connected
to the computer and remote radio modules in the same
network as the local module.

Fig. 1. Detected local and remote modules

The detected network topology is shown of Fig. 2. The
network perspective is only available in API operating mode
of detecting module. Radio modules in AT (transparent) mode
do not support the network discovery process. Each module is
labelled with its role (C – coordinator, R – router).

Fig. 2. Network topology

As can be seen from the figure each node is connected to its

neighbours with solid lines (active connections) or dotted
lines (undiscovered connections), with arrows indicating the
direction of communication. The bidirectional quality and
status of the connection between two nodes are displayed next
to the line that connects them. The link quality is represented
by Link Quality Indication (LQI) with number between 0 and
255 where 0 is the weakest and 255 is the strongest.

Fig. 3 shows table view of detected radio modules. The
green background (first row) denotes the local radio module
used for the detection. The blue background (second row)
denotes the selected module. The table gives the role of each
device, 64-bit address of the modules, network address (for
ZigBee network) or node identifier (for networks working
with other protocols), scan number when the devices were last
discovered. Even when a radio module leaves the network,
some devices continue to store information about their
relationship. On Connection column can be seen the remote
modules which are connected to the selected module. Also are
displayed their: role in the network, 64-bit address, LQI and
status.

Fig. 3. Table view of detected nodes

The quality of the wireless signal can be affected by many

factors, most important of which are absorption, reflection of
waves, line of sight issues, antenna style and location.
Therefore was carried out a range test, which shows the radio
frequency (RF) range and link quality between two selected

453

XBee modules. The LQI is an indication of the quality of the
data packets received by the receiver and it is recorded for
each received packet, indicating the signal energy or the
signal-to-noise ratio. The LQI is only one of the decision
factors in selecting a path to route a message. A method to
calculate the link cost is to use a lookup table to map different
levels of LQI directly to the link cost levels of 0 to 7. The
table is created based on the average results of several
experiments. Other factors such as routing energy efficiency
considerations, can also influence the route selection [2].
Fig. 4 shows the results from the test. During the test the local
module send data packets and waits for the echo from the
remote module. The XCTU software tool counts the number
of the packets sent and received and measures the signal
strength of the both sides as a Received Signal Strength
Indicator (RSSI) value. The performed test type is Cluster ID
0x12, which uses explicit addressing frames directed to the
Cluster ID 0x12 on the data endpoint 0xE8, which returns the
received data to the sender. As can be seen from the figure,
during the test session were sent 100 packets with transmit
interval of three seconds and response timeout before
considering a packet to be lost also three seconds.

Fig. 4. Results from range test tool

Fig. 5 shows the results from Throughput tool of XCTU,
which measures the transfer rate between two radio modules
in the ZigBee sensor network. The throughput type was
bidirectional – Cluster ID 0x12. It is important to note that not

all protocols and operation modes support Bidirectional –
Cluster ID 0x12 Throughput type of test. The duration of the
test was 300 s and were sent 1034 packets with 86856 bytes.

Fig. 5. Results from the throughput session

Fig. 6 shows the collected data from a single sensor node in

the ZigBee network.

Fig. 6. Measured relative humidity and temperature

IV. ACQUIRING DATA IN LABVIEW

ENVIRONMENT

The presented approach can be extended for use in
graphical programming environments. Such environment is
LabVIEW, that is a high level programming language, which
inherits the internal structures of C language, but offers more
simplicity and functionality about making signal processing

454

calculations and control techniques of instruments. The main
advantage that LabVIEW offers is that it is a graphical
language [9, 10]. The programs in this language have, from
the user side, the same appearance as a front panel of an
electronic device, with buttons, graphic screens, numerical
indicators, etc.

LINX is a free software package installed in LabVIEW.
This package makes easy to use graphical programming
language for interacting with some embedded platforms such
as Arduino, chipKIT and myRIO. With LINX installed in
LabVIEW it is possible to easily access the device’s digital
inputs and outputs, analog inputs and outputs, SPI, I2C,
UART, PWM and more features. Inside LINX functions, there
are several options for the user to choose. The Open and Close
functions are used to start and end the communication with
the Arduino microcontroller. In palette Peripherals the user
finds different options for general digital and analog inputs or
outputs. There are also different options for PWM, I2C, SPI
and UART communication. The user can also find sensors
functions that are already prepared to work with specific
sensors. There are different types such as temperature sensors,
light sensors, motion sensors, etc.

In the presented work as example for using Arduino as
wireless sensor node in LabVIEW, PIR movement sensor HC-
SR501with digital output is connected to Arduino. Movement
detectors based on this PIR sensor could be used for
automatically sensing light for a room, bathroom, basement,
porch, warehouse, garage, etc. It can also be used to get
ventilators to work. In safety applications, obviously it can
work as an alarm to detect when a person is entering some
place. Actually, the wireless network topology is the same as
in Fig. 2. The difference is in the graphical way to send
command and receive data from sensor nodes.

Fig. 7. LabVIEW block diagram for communication with
Arduino and Xbee explorer

Graphical programing code with specific LINX functions is
shown in Fig. 7. As can be seen in the figure only three
functions are needed to receive data from wireless node:
Open, Close and Read Digital.

The front panel of wireless communication with sensor is
shown in Fig. 8. It is used to control only virtual serial port
and number of digital pin connected to the motion detection
sensor.

Fig. 8. Front panel of application for motion detection

V. CONCLUSION

In present project is suggested an approach for organizing
wireless sensor network that use communication protocols
according to the standard ZigBee. The proposed and
implemented approach extends the performance of sensors, by
using open source platform for development of low-cost
wireless sensor nodes. In addition as alternative method for
wireless communication between the sensor nodes,
programing code in LabVIEW graphical programming
environment is created.

ACKNOWLEDGEMENT

This research is supported by Project № 171ПР0013-07.

REFERENCES

[1] L. Gavrilovska et al., Eds. Application and Multidisciplinary
Aspects of Wireless Sensor Networks: Concepts, Integration,
and Case Studies, Springer, 2011.

[2] S. Farahani, ZigBee Wireless Networks and Transceivers,
Elsevier Ltd., 2008.

[3] ZigBee Specification, 053474r17, Jan. 2008.
[4] C. Bell, Beginning Sensor Networks with Arduino and

Raspberry Pi, Apress, 2013.
[5] MaxDetect Technology Co., Ltd., “Digital relative humidity &

temperature sensor RHT03” RHT03 datasheet.
[6] Dargie, W., C. Poellabauer. Fundamentals of Wireless Sensor

Networks: Theory and Practice. John Wiley & Sons Ltd., 2010.
[7] F. Eady, Hands-On ZigBee: Implementing 802.15.4 with

Microcontrollers, Elsevier Inc, 2007.
[8] Digi International, XBee/XBee-PRO RF Modules 802.15.4

Product Manual, 2015.
[9] M. Schwartz, and Ol. Manickum, Programming Arduino with

LabVIEW, Packt Publ., 2015.
[10] R. W. Larsen, LabVIEW for Engineers, Prentice Hall Publ.,

2011.

