

63

Fig. 2. SDA line, message structure

Fig. 1. Communication via SDA and SCL lines

Development of I2C Communication
Based on Logics

Pavel Hubenov

Abstract - The fundamental purpose of this article is to
demonstrate how to develop logic gates based driver for
communication between two different hardware devices via I2C
bus. Once the driver is assembled should be used among
peripheral devices captured on this bus. The scope here is high
level messages based on designed modules. Avoided is
description of low level design which is fundamental for all
blocks. Accordingly, the specification of the system, master and
slave devices could be different quantity but synchronized.
Requirements to the master devices are higher because of its
functionality. The example presents driver to communicate with
EEPROM memory 24C02. Analysis of researched results [1].

Keywords - Logic gates, I2C, EEPROM, CPLD.

I. INTRODUCTION

Inter-Integrated Circuit (shorted as I2C), pronounced I-
squared-C, also called TWI, two wire interface, is a multi-
master, multi-slave, single-ended, serial computer bus.
Differentiating from other buses this one is for onboard
communication.

According to the speed there are several types of the bus
from original 100kHz till reach 5MHz ultra-fast mode. Its
application is spread outwards of computer boards. Small
projects which include just a minor functional processor are
equipped with outside located sensors, switches, memories
and etc., communicated via this bus. As a requirement of the
developed driver is accepted original 100kHz clock frequency
because of the wider usage [2].

There are two lines ensured the communication itself –
SDA, serial data and SCL, serial clock, Fig. 1. First one
provides messages which contained strongly defined
structured data. The second one guarantees the clock which is
responsible for synchronization of the provided data. The
driver development is based on strongly recommended
structured messages for I2C bus, Fig. 2.

Properly communication demands to be realized messages
with strongly recommended structured data, Fig. 2. According
to the example using eeprom memory 24C02 and its
specification, there are two different modes – read and write.
The Low Significant Bit statement of the DEVICE ADDRESS
message, LSB, defines which mode is selected – to write, if it
is high level, or to read – low level. Next 3 bits set hardware
adjusted address of the device. Most Significant bits “1010”

are hard cored default starting statements of the message,
Fig. 2a.

When this message is sent on the I2C bus, a slave device,
which has same hardware adjusted address on own pinouts,
will receive and process the contained data. Then it will
response with very short pulse as an acknowledge bit, ACK,
which has to be detected by the master device within SCL is
low levelled. After this bit is processed by the master device, it
sends the second message, containing the address of the
desired byte in the memory, Fig. 2b. An acknowledge bit is
followed to enable the master device’s last message providing
the byte which should be saved, Fig. 2c.

All three messages have to be synchronized referred to
serial clock line, SCL. Basically, every transition occurred on
SDA line – raised and falling edge of the messages has to be
triggered when SCL line is low levelled.

Other case, when “Read” mode is desired, to read the
current written memory cell is necessary to run first message
from Fig. 2a with high level of the low significant bit, LSB.
Then after the acknowledge bit, the memory sent a response
which master device can process [3].

Pavel Hubenov is PhD student at Technical University of
Gabrovo, 5300 Gabrovo, 4 Hadji Dimitar street, Bulgaria, E-mail:
pavel_hubenov@yahoo.com.

64

Fig. 3. Block schematic of the driver

Fig. 4. Block schematic of the 1-byte multiplexer

Fig. 5. Comparator of two 1-byte messages

II. DEVELOPMENT MODEL OF THE BASIC MODULES

The block schematic is presented in Fig. 3. A multiplexer
MUX provides all input data to the inputs of a comparator,
which routes it to the inputs of the shift register with parallel
inputs and serial output, PISO. Control Module enables the
shift register sending and the whole 8 bits word loaded on the
multiplexer inputs, is transmitted sequentially on the SDA
bus outwards to the memory. Pulses from this bus are
delivered via internal feedback bus FBIn to Control Module
which pass them through shift register with serial inputs and
parallel outputs, SIPO, to the Comparator. Different pinout is
used, as an input, externally connected outside the integrated
circuit to SDA bus, for monitoring the acknowledge signal
from the memory, called external feedback FBEx. If both
compared messages by the comparator are different an error
occurred. If not, Control Module waits for the low level of the
acknowledge signal, via FBEx and if so, select next channel of
the multiplexer and the same execution is following [4].

A. Multiplexer

Multiplexer, MUX, module is a tripled 8 bits’ multiplexer
with adjacent data inputs, address inputs and 8 bits output. The
number of the inputs depends on the desired functionality.
Presented one in Fig. 4 is based on 8 multiplexers with 3
inputs each [5].

The number of the inputs of each multiplexer, NMUXin, is in
function of the number of messages, NMESS, to be loaded:

NMUXin = NMESS. (1)

According to the specification of the memory device, there
is a mode of sequential reading with more than 3 words. After
that is defined the number of the common addresses inputs,
NMUXadd:

NMUXin = 2 NMUXadd. (2)

The number of the used multiplexers, NMUX, depends on
the number of the bits, NMESSbits, of each message, i.e. its
length:

NMUX = NMESSbits. (3)

As per the Fig. 2, to load mentioned three 1-byte messages
simultaneously, the multiplexer needs 3x1 byte inputs. In this
case, first message has to be load to inputs labeled as DA7-
DA0(Data Address). Second one, to inputs WD7-WD0(Word
Data) and third one to D7-D0(Data). Another approach is
using one 1-byte input, and dynamically changed data which
transition should be in the meantime between the last bit of the
message and approximately at the same time or around the
acknowledge, ACK, received bit. Disadvantage is rescued
synchronization and complicated extra module to ensure this
delay.

B. Comparator

Basically, this module compares both 8 bits messages –
input and output one of both shift registers, Fig. 5. They have
to be absolutely the same transferred via internal feedback,
FBIn or external feedback FBEx. Otherwise, there is an internal
problem for the environment itself, or external one over the
hardware connections, if FBEx has failed. In both cases,
Control Module should stop processing and generate warning
on Y. It decides which feedback to be used.

To develop this module is necessary to be defined inputs
for compared words, NCOMPin:

NCOMPin= NMESSbits. (4)

 This module is peripheral, for verification only, connected
to multiplexer – shift register bus.

65

Fig. 7. Shift register with parallel inputs and serial output

Fig. 6. Shift register with parallel inputs and serial output

Fig. 8. SDA and SCL synchronization

C. Shift Register with Parallel Inputs and Serial Outputs

 Register with parallel inputs and serial output, PISO,
provides messages in pulse sequence, based on D-latches
synthesis, Fig. 6. It is a standard register. The input numbers,
NPISOin, are as follow:

NPISOin= NCOMPin. (5)

When is designed this module, should be taken into account
whether it has to be able to memorize the message or not.

If it captures all P7 - P0 statements internally, and within
message sending, input statements are enabled to be changed,
the internal triggers have to be reset after the last bit is sent
and before acknowledge bit negative pulse is expired.

D. Shift Register with Serial Input and Parallel Outputs

Register with serial input and parallel outputs, SIPO,
provides messages from pulse sequence to 1-byte parallel
statements, based on D-latches synthesis. Used is a standard
register schematic, with serial input and parallel outputs,
Fig. 7. The number of outputs, NSIPOout, is in function of
number of messages length:

NSIPOout= NCOMPin. (6)

E. Control Module

This module is responsible to process the exact input
clock frequency, to provide it reduced to different modules,
ensures synchronization among all of them, manage enabling
or disabling their functions. Based on the requirement for
fSCL=100 kHz, the input counter has to divide fundamental
frequency, fCLK, n times, Fig. 8, as follow:

n=TSCL/TCLK, (7)

where n is the difference in times. Since SDA and SCL pulses
are shifted to 90 degrees, the shifter sub-module has to ensure

a delay for accurate transition of SDA exactly when SCL is in
the middle of its low level. The delay time m is as follow:

m=n/4, [pulses of TCLK], (8)

T0SCL= T0SDA+ m, (9)

where, T0SCL and T0SDA are starting zero times in the very
beginning.

Another feature of Control Module is ACK bit detection.
For that purpose, a special sub-module is designed based on a
counter which observes the signal via feedback, currently
selected one. Reaching the last bit, a counter enables the input
of a latch which has to be triggered by the acknowledge bit.
The triggered output runs next operation.

III. CONCLUSION

The main purpose of the article is to present how is
assembled a driver for communication dedicated to I2C bus
and realized using logic gates functions. The scope of the
designed block schematic is high levelled relationship among
the blocks, because it is mostly byte level but a bit level. How
they communicate onboard and their behavior with peripheral
devices. The strategy is defined according to the complexity of
the project. In the current case, algorithm and modules which
process it, covered basic communications between the driver
and outside located memory. A stress test has been run and
upgrade options are arisen.

The developed schematic ensures sending of structured
frames according to I2C communications messages. It could
be used with different peripherals with minimum changes if
necessary.

An advantage to develop a driver like this is the upgrade
option. All of the mentioned equations are messages based on,
which is fundamental for more complexity communication bus
if is necessary. This approach allows to be implemented
between two hardware devices on one board, which
communicate over upgraded to two bytes’ messages bus for
example, i.e. acknowledge bit confirms after 2 received bytes.

66

Customized in this way limits it to be applicable within,
between or among, only a group of devices with upgraded
modules but not standards. This upgrade is not a benefit which
is deserved to be achieved at any cost. Another upgrade option
is frequency incrementation. Both should lead to faster and
bigger volume of data transfer, but for customized needs.
Realized communication on this test example is referenced on
fSCL=100 kHz, but easy recalculating to fSCL=2 MHz (this is the
maximum allowed frequency as per equations (7), (8) and (9),
if fCLK=8 MHz) and testing, provide successfully data transfer
result from Comparator Module. In this case is used internal
feedback to check if bytes are properly transferred and
accepted. And for customized needs this method is more
successful than the first one [6].

 Intentionally low-level design and development of
every module is avoided in the description, because using
standard units like registers and multiplexers is recommended.
Mostly, an extra functionality could be added, but it is referred
to Boolean algebra rules and logic synthesis, which could be
added as extra schematics to someone of the standards [7].

 For realization of the driver is used complex
programmable logic device. This environment is based on

logic gates functions synthesis and allows low level designing
enough.

REFERENCES

[1] E. Karbab, D. Djenouri, S. Boulkaboul, and A. Bagula, “Car
Park Management with Networked Wireless Sensors and
Active RFID”, Electro Information Technology EIT, 2015; 9

[2] T. Kuphaldt, Lessons in Electric Circuits, 4th edition, pp. 433-
470, 2007;7

[3] Philips Semiconductors, “Application Note I2C Bus”,
AN10216-01, I2C manual, pp. 11-50, 2003;5

[4] A. Maini, „Digital Electronics - Principles, Devices and
Applications”, John Wiley & Sons Ltd, pp. 69-115, pp.269-298,
Chichester, England, 2007; 2

[5] A. Aleksandrov, G. Goranov, and P. Hubenov, “Mathematical
Model of Control System of Drilling Machine”, ICEST, Ohrid,
2016;3

[6] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R.
Kastner, “Information Flow Isolation in I2C and USB” , Design
Automation Conference DAC, 2011;8

[7] S. Lee, “Advanced Digital Logic Design”, Nelson, 1120
Birchmount Road, Toronto, Ontario, pp. 6-148, 2006;6

