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Leveled Binary Trees and Integer Sequences 
Generation 
Adrijan Božinovski

Abstract – This paper introduces a data structure called a 
leveled binary tree, as a a generalization of both the complete 
and full binary tree. It is shown how inserting nodes in a leveled 
binary tree, while maintaining a preference for a single direction 
(either strictly left or strictly right) makes the number of single-
direction edges in the binary tree increase according to certain 
regularities. These regularities are formalized using 
mathematical formulae, which are presented and proved, and it 
is shown how they produce specific integer sequences which can 
be expanded to infinity.   
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I.  INTRODUCTION 

Trees are fundamental concepts in computer science, and 
are frequently used to keep track of ancestors or descendants, 
sports tournaments, organizational charts of large corporations 
and so on [1]. Trees are one of the basic data structures used 
in combinatorial algorithms [2], search techniques (e.g. [3, 
4]), and game playing [5]. This paper also points out the use 
of binary trees for generating integer sequences, which are 
important in information forensics [6], cryptography [7], and 
security [8]. 

A binary tree is a data structure made up of nodes, in 
which each node contains an information part and links, also 
called edges, to two other such nodes, called the node’s left 
and right child nodes, respectively. A node can be null as 
well, in which case it contains no information. A recursive 
definition of a binary tree is that it is a structure with a finite 
set of nodes, which either contains no nodes or contains a root 
node and binary trees as its left and right child nodes [9]. 

Binary trees have been shown to be very useful in 
mathematics and computer science and as such have been 
extensively studied. Several variations of the binary tree 
structure have been conceived, such as binary search trees, 
red-black trees [9], AVL trees [10], B-trees [11], and so on. 
Binary trees are often used as auxiliary data structures in other 
research endeavors, both practical (e.g., [12,13]) and 
theoretical (e.g., [14,15]), but occasionally are the subject of 
the research itself (e.g., [16]). 

In this paper, a new variation of binary trees, called leveled 
binary trees, will be introduced. It will be shown how 
particular integer sequences can be generated using them, 
which will be presented and the formulae for their generation 
will be proved. These integer sequences have been included 
into the Online Encyclopedia of Integer Sequences. 

II. LEVELED BINARY TREES 

A leveled binary tree is a binary tree in which nodes are 
inserted in a breadth-first fashion. In other words, insertion of 
a node increases the height of the tree only when the tree is 
full, i.e., when all of the positions at the last level have already 
been occupied. Fig. 1 shows examples of leveled binary trees 
with numbers of nodes n = [1,9]. 
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Fig. 1. Examples of leveled binary trees for n = [1,9] 

In a leveled binary tree, nodes can be inserted arbitrarily, 
as long as the leveled structure is preserved, in a sense that no 
new level is inserted until all the possible positions in the last 
level have been occupied. This is a generalization of the 
complete binary tree structure, where nodes in the last level 
are always placed as far left as possible [17]. Also, if a leveled 
binary tree has n = 2k - 1 nodes, where k  0 is an integer, it is 
a full binary tree [18]. Examples of full binary trees are shown 
in Fig. 1a, 1c and 1g, having 1, 3 and 7 nodes respectively. In 
this paper, the root is treated as being placed on level 0. 

 

III. MINIMUM NUMBER OF SINGLE-DIRECTION 

EDGES IN A LEVELED BINARY TREE 

A. Motivation and Formula 

During the course of research, a question appeared about 
the regularity by which the minimum number of left edges 
appear in a leveled binary tree with progressively increasing 
values of n. Specifically, a question arose about how to obtain 
a formula which would produce the minimum numbers of left 
edges in leveled binary trees with n nodes. 
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Initially, this problem was solved algorithmically, and the 
formula was extracted subsequently. The formula is presented 
in equation (1). 

amin(n) = 2h-1 - 1 + (n - 3·2h-1 + 1) · H(n - 3·2h-1 + 1)  (1) 

where h = log2n and represents the height of the leveled 
binary tree, and H() is the Heaviside step function. 

The following section provides a proof of this formula. For 
the sake of simplicity, the proof will concern the minimum 
number of left edges in a leveled binary tree with a given 
number of nodes n. The same formula may be used for the 
minimum number of right edges in a leveled binary tree, 
whereas the proof is analogous. 

B. Proof of the Formula 

Building a leveled binary tree is done in such a way that 
nodes are inserted only on a single level, until it is completely 
filled, i.e., inserting nodes in a new level is possible only 
when all levels up to the new one have been filled completely. 
Thus, the nature of the leveled binary tree guarantees that its 
level is always h = log2n.  

If a leveled binary tree has n = 2k - 1 nodes, it is a full tree. 
Since the number of edges in any tree is 1 less than the 
number of its nodes, a full binary tree contains 2k - 2 edges. 
Since there is an equal number of left and right edges in a full 
binary tree, 2k-1 - 1 edges in a full binary tree are strictly left 
(and also strictly right). 

If a leveled binary tree has n  2k - 1 nodes, it is not a full 
tree. However, since a new level is inserted in a leveled binary 
tree only after the previous one has been fully populated, it is 
only the last level which shows that the leveled binary tree is 
not full – the sub-tree consisting of the root and all the levels 
up the last is a full binary tree. In other words, the tree of level 
h = log2n is not full, but its sub-tree of level h - 1 is full. 
This means that there are at least 2h-1 - 1 left edges in any 
leveled binary tree. 

The maximum number of nodes in the last level of a 
leveled binary tree is 2h – when this number of nodes is 
reached, the leveled tree becomes a full tree. In order to keep 
the number of left edges to a minimum, only right child nodes 
would be inserted in the last level as much as possible. The 
number of possible right child nodes that can be inserted in 
the last level is 2h/2 = 2h-1 – after this many right child nodes 
are inserted, there is no more room for right child nodes in the 
last level, so the next node to be inserted would have to be a 
left child node, thus forcing the increase of the number of left 
edges in the leveled binary tree. As an example, the leveled 
binary tree in Fig. 1e has the minimum possible number of left 
edges, but the next node to be inserted in the last level has to 
be a left child node, as shown in Fig. 1f, so the number of left 
edges in the tree must increase. 

In order for the number of left edges to be forced to 
increase, the number of nodes in the leveled binary tree must 
be greater than the number of nodes in all levels before the 
last plus half of all possible nodes in the last level. Thus, in 
order for the number of left edges to be forced to increase, it is 
necessary that n > 2h - 1 + 2h-1, so n > 3·2h-1 + 1, thus n - 3·2h-1 
+ 1 > 0. Using the Heaviside step function, it can be said that 

if H(n - 3·2h-1 + 1) = 1 the minimum number of left edges in a 
leveled binary tree increases, whereas if H(n - 3·2h-1 + 1) = 0 
the minimum number of left edges in a leveled binary tree 
stays 2h-1 - 1.  

The amount by which the minimum number of left edges 
increases in a leveled binary tree is  the same amount required 
for the minimum number of left edges to increase. This means 
that the minimum number of left edges in a leveled binary tree 
will be 2h-1 - 1 + n - 3·2h-1 + 1 if n - 3·2h-1 + 1 > 0 and 2h-1 - 1 
otherwise. Employing the Heaviside step function notation, 
the expression 2h-1 - 1 + (n - 3·2h-1 + 1) · H(n - 3·2h-1 + 1) is 
obtained, which is shown in equation (1). 

C. Integer Sequence 

Obtaining the results for progressive values of n using this 
formula gives the following values: 0, 0, 1, 1, 1, 2, 3, 3, 3, 3, 
3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 
31, 31, 31, 31, 31, 31, 31..., and this sequence can be 
expanded to infinity. It starts with the value for n = 1, as 
values for n  0 are disregarded (since there are no binary 
trees with n  0 nodes). The first nine values of this sequence 
correspond with the number of left edges in the leveled binary 
trees of Fig. 1a to 1h. This sequence has been included into 
the On-Line Encyclopedia of Integer Sequences [19]. 

IV. MAXIMUM NUMBER OF SINGLE-DIRECTION 

EDGES IN A LEVELED BINARY TREE 

A. Motivation and Formula 

Following the discovery of the integer sequence linked 
with the minimum number of single-direction edges in a 
leveled binary tree, curiosity prompted research about the 
regularity which governs the maximum number of single-
direction edges in a leveled binary tree as well. Following the 
same approach, an algorithm was devised first and the 
formula was extracted afterwards. The formula is shown in 
(2).  

amax(n) = (n + 2h-1 - 1) · He + (-1)He · (2h - 1)  (2) 

where, once again, h = log2n and represents the height of the 
leveled binary tree, and He = H(-n + 3·2h-1 - 1), where, again, 
H() is the Heaviside step function. 

The proof will concern the maximum number of right edges 
in a leveled binary tree, to enable the use of Fig. 1 again. The 
formula for the maximum number of left edges in a leveled 
binary tree is identical and its proof is analogous.  

B. Proof of the Formula 

Once again, h = log2n is the level of the leveled binary 
tree, 2h-1 - 1 is the number of single-direction (in this case, 
strictly right) edges in the full binary sub-tree of level h-1, and 
2h is the maximum possible number of nodes in the last level 
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(h) of the leveled binary tree. In it, it is possible to insert 
strictly right nodes, thus increasing the number of strictly right 
edges, up to a certain threshold, after which the maximum 
number of right edges remains unchanged until a next level is 
reached. The threshold is identical as in the previous formula, 
except that the increase of the number of right edges in the 
last level will take place while the threshold is not reached, 
and afterwards that number will remain unchanged until a 
next level is reached. Thus, it can be said that the number of 
right edges in the last level of the leveled binary tree will 
increase while n < 2h - 1 + 2h-1, i.e., n < 3·2h-1 - 1, or, stated 
differently, -n + 3·2h-1 - 1 > 0. Stated using the Heaviside step 
function, the number of strictly right edges will increase as 
long as H(-n + 3·2h-1 - 1) = 1, and will remain unchanged as 
long as H(-n + 3·2h-1 - 1) = 0. To shorten the writing, the 
annotation He = H(-n + 3·2h-1 - 1) is used. 

The maximum number of right edges in a leveled binary 
tree is the number of right edges in the full binary sub-tree 
plus half of the possible edges in the last level, which equals 
to 2h-1 - 1 + 2h-1 = 2h - 1. On the other hand, if the last level is 
not completely filled with right edges, the total number of 
right edges will equal to the total number of edges in the tree 
minus the number of left edges in the full binary sub-tree of 
level h-1, which equals to n - 1 - (2h-1 - 1) = n - 2h-1. In other 
words, the maximum number of right edges in a leveled 
binary tree is n - 2h-1 when He = 1 and 2h - 1 when He = 0. 
Both cases can be included in a single expression when stated 
as (n + 2h-1 - 1)·He + (-1)He · (2h - 1), which represents 
equation (2).  

C. Integer Sequence 

Obtaining the results for progressive values of n using this 
formula gives the following values: 0, 1, 1, 2, 3, 3, 3, 4, 5, 6, 
7, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 
15, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 
30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 
31, 31, 32, 33, 34, 35, 36, 37, 38..., and this sequence can also 
be expanded to infinity. It also starts with the value for n = 1, 
and the first nine values of this sequence correspond with the 
number of right edges in the leveled binary trees of Fig. 1a to 
1h. This sequence has also been included into the On-Line 
Encyclopedia of Integer Sequences [20]. 

V. CONCLUSION 

In this paper, leveled binary trees are introduced as binary 
trees in which nodes are inserted in a breadth-first fashion. It 
is shown that special cases of the leveled binary trees are the 
complete binary trees and full binary trees. Inserting new 
nodes in a leveled binary tree while maintaining preference 
for a single direction, i.e., strictly left or strictly right child 
nodes, leads to the number of the single-direction edges 
increasing according to certain regularities. It is shown how 
the minimum and maximum numbers of single-direction 
edges in leveled binary trees are obtained according to certain 
formulae, which are presented and proved. Both formulae 
produce particular integer sequences which can be expanded 

to infinity, and both of those sequences have been included 
into the Online Encyclopedia of Integer Sequences. 

The concept of a leveled binary tree is a novel one, and 
there are no previous results involving leveled binary trees as 
such, as far as the author could find. It can therefore be 
inferred that there is no previous research on this topic, and 
the hope of the author is that this paper will spark further such 
research and leveled binary trees will find their place and 
purpose in science. It can be said that the first such purpose is 
to be used as a data structure based on which integer 
sequences can be explained and generated, such as the two 
integer sequences presented in this paper, and hopefully there 
will be more. 
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