

123

Leveled Binary Trees and Integer Sequences
Generation
Adrijan Božinovski

Abstract – This paper introduces a data structure called a
leveled binary tree, as a a generalization of both the complete
and full binary tree. It is shown how inserting nodes in a leveled
binary tree, while maintaining a preference for a single direction
(either strictly left or strictly right) makes the number of single-
direction edges in the binary tree increase according to certain
regularities. These regularities are formalized using
mathematical formulae, which are presented and proved, and it
is shown how they produce specific integer sequences which can
be expanded to infinity.

Keywords – Leveled binary tree, Single-direction edges,
Minimum, Maximum, Integer sequence, Online Encyclopedia of
Integer Sequences.

I. INTRODUCTION

Trees are fundamental concepts in computer science, and
are frequently used to keep track of ancestors or descendants,
sports tournaments, organizational charts of large corporations
and so on [1]. Trees are one of the basic data structures used
in combinatorial algorithms [2], search techniques (e.g. [3,
4]), and game playing [5]. This paper also points out the use
of binary trees for generating integer sequences, which are
important in information forensics [6], cryptography [7], and
security [8].

A binary tree is a data structure made up of nodes, in
which each node contains an information part and links, also
called edges, to two other such nodes, called the node’s left
and right child nodes, respectively. A node can be null as
well, in which case it contains no information. A recursive
definition of a binary tree is that it is a structure with a finite
set of nodes, which either contains no nodes or contains a root
node and binary trees as its left and right child nodes [9].

Binary trees have been shown to be very useful in
mathematics and computer science and as such have been
extensively studied. Several variations of the binary tree
structure have been conceived, such as binary search trees,
red-black trees [9], AVL trees [10], B-trees [11], and so on.
Binary trees are often used as auxiliary data structures in other
research endeavors, both practical (e.g., [12,13]) and
theoretical (e.g., [14,15]), but occasionally are the subject of
the research itself (e.g., [16]).

In this paper, a new variation of binary trees, called leveled
binary trees, will be introduced. It will be shown how
particular integer sequences can be generated using them,
which will be presented and the formulae for their generation
will be proved. These integer sequences have been included
into the Online Encyclopedia of Integer Sequences.

II. LEVELED BINARY TREES

A leveled binary tree is a binary tree in which nodes are
inserted in a breadth-first fashion. In other words, insertion of
a node increases the height of the tree only when the tree is
full, i.e., when all of the positions at the last level have already
been occupied. Fig. 1 shows examples of leveled binary trees
with numbers of nodes n = [1,9].

a) b) c)

d) e) f)

g) h) i)

Fig. 1. Examples of leveled binary trees for n = [1,9]

In a leveled binary tree, nodes can be inserted arbitrarily,
as long as the leveled structure is preserved, in a sense that no
new level is inserted until all the possible positions in the last
level have been occupied. This is a generalization of the
complete binary tree structure, where nodes in the last level
are always placed as far left as possible [17]. Also, if a leveled
binary tree has n = 2k - 1 nodes, where k  0 is an integer, it is
a full binary tree [18]. Examples of full binary trees are shown
in Fig. 1a, 1c and 1g, having 1, 3 and 7 nodes respectively. In
this paper, the root is treated as being placed on level 0.

III. MINIMUM NUMBER OF SINGLE-DIRECTION

EDGES IN A LEVELED BINARY TREE

A. Motivation and Formula

During the course of research, a question appeared about
the regularity by which the minimum number of left edges
appear in a leveled binary tree with progressively increasing
values of n. Specifically, a question arose about how to obtain
a formula which would produce the minimum numbers of left
edges in leveled binary trees with n nodes.

Adrijan Božinovski is with the School of Computer Science and
Information Technology at University American College Skopje,
1000 Skopje, Macedonia, E-mail: bozinovski@uacs.edu.mk

124

Initially, this problem was solved algorithmically, and the
formula was extracted subsequently. The formula is presented
in equation (1).

amin(n) = 2h-1 - 1 + (n - 3·2h-1 + 1) · H(n - 3·2h-1 + 1) (1)

where h = log2n and represents the height of the leveled
binary tree, and H() is the Heaviside step function.

The following section provides a proof of this formula. For
the sake of simplicity, the proof will concern the minimum
number of left edges in a leveled binary tree with a given
number of nodes n. The same formula may be used for the
minimum number of right edges in a leveled binary tree,
whereas the proof is analogous.

B. Proof of the Formula

Building a leveled binary tree is done in such a way that
nodes are inserted only on a single level, until it is completely
filled, i.e., inserting nodes in a new level is possible only
when all levels up to the new one have been filled completely.
Thus, the nature of the leveled binary tree guarantees that its
level is always h = log2n.

If a leveled binary tree has n = 2k - 1 nodes, it is a full tree.
Since the number of edges in any tree is 1 less than the
number of its nodes, a full binary tree contains 2k - 2 edges.
Since there is an equal number of left and right edges in a full
binary tree, 2k-1 - 1 edges in a full binary tree are strictly left
(and also strictly right).

If a leveled binary tree has n  2k - 1 nodes, it is not a full
tree. However, since a new level is inserted in a leveled binary
tree only after the previous one has been fully populated, it is
only the last level which shows that the leveled binary tree is
not full – the sub-tree consisting of the root and all the levels
up the last is a full binary tree. In other words, the tree of level
h = log2n is not full, but its sub-tree of level h - 1 is full.
This means that there are at least 2h-1 - 1 left edges in any
leveled binary tree.

The maximum number of nodes in the last level of a
leveled binary tree is 2h – when this number of nodes is
reached, the leveled tree becomes a full tree. In order to keep
the number of left edges to a minimum, only right child nodes
would be inserted in the last level as much as possible. The
number of possible right child nodes that can be inserted in
the last level is 2h/2 = 2h-1 – after this many right child nodes
are inserted, there is no more room for right child nodes in the
last level, so the next node to be inserted would have to be a
left child node, thus forcing the increase of the number of left
edges in the leveled binary tree. As an example, the leveled
binary tree in Fig. 1e has the minimum possible number of left
edges, but the next node to be inserted in the last level has to
be a left child node, as shown in Fig. 1f, so the number of left
edges in the tree must increase.

In order for the number of left edges to be forced to
increase, the number of nodes in the leveled binary tree must
be greater than the number of nodes in all levels before the
last plus half of all possible nodes in the last level. Thus, in
order for the number of left edges to be forced to increase, it is
necessary that n > 2h - 1 + 2h-1, so n > 3·2h-1 + 1, thus n - 3·2h-1
+ 1 > 0. Using the Heaviside step function, it can be said that

if H(n - 3·2h-1 + 1) = 1 the minimum number of left edges in a
leveled binary tree increases, whereas if H(n - 3·2h-1 + 1) = 0
the minimum number of left edges in a leveled binary tree
stays 2h-1 - 1.

The amount by which the minimum number of left edges
increases in a leveled binary tree is the same amount required
for the minimum number of left edges to increase. This means
that the minimum number of left edges in a leveled binary tree
will be 2h-1 - 1 + n - 3·2h-1 + 1 if n - 3·2h-1 + 1 > 0 and 2h-1 - 1
otherwise. Employing the Heaviside step function notation,
the expression 2h-1 - 1 + (n - 3·2h-1 + 1) · H(n - 3·2h-1 + 1) is
obtained, which is shown in equation (1).

C. Integer Sequence

Obtaining the results for progressive values of n using this
formula gives the following values: 0, 0, 1, 1, 1, 2, 3, 3, 3, 3,
3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
31, 31, 31, 31, 31, 31, 31..., and this sequence can be
expanded to infinity. It starts with the value for n = 1, as
values for n  0 are disregarded (since there are no binary
trees with n  0 nodes). The first nine values of this sequence
correspond with the number of left edges in the leveled binary
trees of Fig. 1a to 1h. This sequence has been included into
the On-Line Encyclopedia of Integer Sequences [19].

IV. MAXIMUM NUMBER OF SINGLE-DIRECTION

EDGES IN A LEVELED BINARY TREE

A. Motivation and Formula

Following the discovery of the integer sequence linked
with the minimum number of single-direction edges in a
leveled binary tree, curiosity prompted research about the
regularity which governs the maximum number of single-
direction edges in a leveled binary tree as well. Following the
same approach, an algorithm was devised first and the
formula was extracted afterwards. The formula is shown in
(2).

amax(n) = (n + 2h-1 - 1) · He + (-1)He · (2h - 1) (2)

where, once again, h = log2n and represents the height of the
leveled binary tree, and He = H(-n + 3·2h-1 - 1), where, again,
H() is the Heaviside step function.

The proof will concern the maximum number of right edges
in a leveled binary tree, to enable the use of Fig. 1 again. The
formula for the maximum number of left edges in a leveled
binary tree is identical and its proof is analogous.

B. Proof of the Formula

Once again, h = log2n is the level of the leveled binary
tree, 2h-1 - 1 is the number of single-direction (in this case,
strictly right) edges in the full binary sub-tree of level h-1, and
2h is the maximum possible number of nodes in the last level

125

(h) of the leveled binary tree. In it, it is possible to insert
strictly right nodes, thus increasing the number of strictly right
edges, up to a certain threshold, after which the maximum
number of right edges remains unchanged until a next level is
reached. The threshold is identical as in the previous formula,
except that the increase of the number of right edges in the
last level will take place while the threshold is not reached,
and afterwards that number will remain unchanged until a
next level is reached. Thus, it can be said that the number of
right edges in the last level of the leveled binary tree will
increase while n < 2h - 1 + 2h-1, i.e., n < 3·2h-1 - 1, or, stated
differently, -n + 3·2h-1 - 1 > 0. Stated using the Heaviside step
function, the number of strictly right edges will increase as
long as H(-n + 3·2h-1 - 1) = 1, and will remain unchanged as
long as H(-n + 3·2h-1 - 1) = 0. To shorten the writing, the
annotation He = H(-n + 3·2h-1 - 1) is used.

The maximum number of right edges in a leveled binary
tree is the number of right edges in the full binary sub-tree
plus half of the possible edges in the last level, which equals
to 2h-1 - 1 + 2h-1 = 2h - 1. On the other hand, if the last level is
not completely filled with right edges, the total number of
right edges will equal to the total number of edges in the tree
minus the number of left edges in the full binary sub-tree of
level h-1, which equals to n - 1 - (2h-1 - 1) = n - 2h-1. In other
words, the maximum number of right edges in a leveled
binary tree is n - 2h-1 when He = 1 and 2h - 1 when He = 0.
Both cases can be included in a single expression when stated
as (n + 2h-1 - 1)·He + (-1)He · (2h - 1), which represents
equation (2).

C. Integer Sequence

Obtaining the results for progressive values of n using this
formula gives the following values: 0, 1, 1, 2, 3, 3, 3, 4, 5, 6,
7, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15,
15, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 32, 33, 34, 35, 36, 37, 38..., and this sequence can also
be expanded to infinity. It also starts with the value for n = 1,
and the first nine values of this sequence correspond with the
number of right edges in the leveled binary trees of Fig. 1a to
1h. This sequence has also been included into the On-Line
Encyclopedia of Integer Sequences [20].

V. CONCLUSION

In this paper, leveled binary trees are introduced as binary
trees in which nodes are inserted in a breadth-first fashion. It
is shown that special cases of the leveled binary trees are the
complete binary trees and full binary trees. Inserting new
nodes in a leveled binary tree while maintaining preference
for a single direction, i.e., strictly left or strictly right child
nodes, leads to the number of the single-direction edges
increasing according to certain regularities. It is shown how
the minimum and maximum numbers of single-direction
edges in leveled binary trees are obtained according to certain
formulae, which are presented and proved. Both formulae
produce particular integer sequences which can be expanded

to infinity, and both of those sequences have been included
into the Online Encyclopedia of Integer Sequences.

The concept of a leveled binary tree is a novel one, and
there are no previous results involving leveled binary trees as
such, as far as the author could find. It can therefore be
inferred that there is no previous research on this topic, and
the hope of the author is that this paper will spark further such
research and leveled binary trees will find their place and
purpose in science. It can be said that the first such purpose is
to be used as a data structure based on which integer
sequences can be explained and generated, such as the two
integer sequences presented in this paper, and hopefully there
will be more.

ACKNOWLEDGEMENT

George Tanev was an MSc student doing his Master's
Thesis under the supervision of the author during the work
shown in this paper. Thus, he contributed to it, especially to
the first of the two sequences presented herein.

REFERENCES

[1] R. Sedgewick, Algorithms in C++, Parts 1-4: Fundamentals,
Data Structures, Sorting, Searching, 3rd ed, Addison-Wesley,
1998.

[2] D.L. Kreher, and D.R. Stinson, Combinatorial Algorithms:
Generation, Enumeration, and Search, Discrete Mathematics
and its Applications (Book 7), CRC Press, 1st Edition, 1998.

[3] G. Brassard, and P. Bratley, Fundamentals of Algorithmics,
Prentice Hall of India, 2002.

[4] A. Bozinovski, and S. Bozinovski, "N-Queens Pattern
Generation: An Insight into Space Complexity of a
Backtracking Algorithm", Proc. 3rd Int. Symp. Information and
Communication Technologies, Las Vegas, Nevada, USA, 281-
286, 2004.

[5] E. Rich, Artificial Intelligence, McGraw-Hill series in artificial
intellilgence, McGraw-Hill Inc., 1983.

[6] I. Suh, and T. C. Headrick, "A Comparative Analysis of the
Bootstrap Versus Traditional Statistical Procedures Applied to
Digital Analysis Based on Benford’s Law", J. Forensic and
Investigative Accounting, vol. 2, no. 2, pp. 144-175, 2010.

[7] J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C.
Vuillaume, "Merkle Signatures with Virtually Unlimited
Signature Capacity", Proc. 5th Int. Conf. Applied Cryptography
and Network Security, Zhuhai, China, pp. 31-45, 2007.

[8] J. Katz, "Binary Tree Encryption: Constructions and
Applications", Information Security and Cryptology (ICISC
2003), vol. 2971, Lecture Notes in Computer Science, pp. 1-11,
Springer, 2003.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd ed., The MIT Press, 2009.

[10] G. M. Adel'son-Vel'skii, and E.M. Landis, "An Algorithm for
the Оrganization of Information", Soviet Math. Doklady, vol. 3,
pp. 1259-1263, 1962.

[11] R. Bayer, and E. McCreight, "Organization and Maintenance or
Large Oriented Indexes", Acta Inform., vol. 3, no. 3, pp. 173-
189, 1972.

[12] S. Roch, and M Steel, "Likelihood-Based Tree Reconstruction
on a Concatenation of Alignments can be Statistically
Inconsistent", Theor. Popul. Biol., vol. 100, pp. 56-62, 2014.

126

[13] Y. Li, M. Xu, H. Zhao, and W. Huang, "Hierarchical Fuzzy
Entropy and Improved Support Vector Machine Based Binary
Tree Approach for Rolling Bearing Fault Diagnosis", Mech.
Mach. Theory, vol. 98, pp. 114-132, 2016.

[14] B. Liu, Y. Shen, X. Chen, Y. Chen, and X. Wang, "A partial
binary tree DEA-DA cyclic classification model for decision
makers in complex multi-attribute large-group interval-valued
intuitionistic fuzzy decision-making problems," Inf. Fusion, vol.
18, pp. 119-130, 2014.

[15] Y. Lee, and J. Lee, "Binary tree optimization using genetic
algorithm for multiclass support vector machine," Expert Syst.
Appl, vol. 42, no. 8, pp, 3843-3851, 2015.

[16] M. Amani, K.A. Lai, and R.E. Tarjan, "Amortized rotation cost
in AVL trees," Inf. Process. Lett., vol. 98, no. 5, pp. 327-330,
2016.

[17] M.T. Goodrich, R. Tamassia, and M.H. Goldwasser, Data
Sructures and Algorithms in Java, 6th ed., Wiley, 2014.

[18] E. Horowitz, and S. Sahni, Fundamentals of Data Structures.
Computer Science Press, 1983.

[19] A. Božinovski, G. Tanev, Sequence A277267 in the On-Line
Encyclopedia of Integer Sequences, 2016, (accessed October 13,
2016) Available from: https://oeis.org/A277267.

[20] A. Božinovski, Sequence A279521 in the On-Line Encyclopedia
of Integer Sequences, 2016, (accessed December 23, 2016)
Available from: https://oeis.org/A279521.

