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Analysis of Classification Algorithms for using in 
Vertical Retrieval Systems 
Nemanja Popović1 and Suzana Stojković2 

Abstract – Classification is the most solved and the most used 
machine learning problem. In a last few decades many 
classification algorithms have been developed. Because of that, 
when classification is needed in some problem solving, the best 
algorithm should always be selected. The problem that is 
analysed in this paper is choosing classification algorithms that 
can be used in vertical retrieval system for both document and 
query classification. We compared SVM, Multinomial Naïve 
Bayes algorithm, Bernoulli Naïve Bayes algorithm and Random 
forest. The experiments presented in the paper, show that in the 
long documents classification SVM and Multinomial Naïve Bayes 
algorithms have a similar precision (SVM is a little better), but 
the Multinomial Naive Bayes algorithm correctly classified 
93.14% of queries, while SVM only 22.55%. 
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I.  INTRODUCTION 

Information retrieval systems (IRS) [1] are the systems the 
goal of which is to find the documents in the large corpus of 
the documents that contain information that the user needs. 
The corpuses that are retrieved increase very fast. For 
example, in the Web searching, the retrieving corpus consists 
of all documents on the Web. That is why finding the 
information that the user needs gets harder and harder. 

There are three basic requirements that IRS should satisfy: 
 Response time should be as short as possible.  
 The number of selected documents should not be too 

large.  
 Retrieved documents should be relevant to the user 

query. 
To improve all these parameters, vertical search (search on 

the given domain) [2] is often used. In the vertical retrieval 
systems, the documents from the corpus are classified in the 
set of the domains and the user specifies the query and the 
domain in which the search should be done. Users of the 
retrieval systems often are not experts in the domain of its 
queries, and they cannot specify the domain in the right way. 
Our idea is to automatically detect the query domain, i.e., to 
classify the queries on the similar ways as the documents in 
the corpus. The first step in that process is to choose the 
classification algorithm that can be applied in both document 
and query classification.  

Classification problem is a very often solved machine 
learning problem. Its goal is to predict the value of the 
unknown class attribute based on the set of values of the 
known attributes. Now, classification is used in many science 
areas: in medicine (to classify the results of various analyses) 
in speech recognition, in OCR systems, etc. and, of course, in 
text classification. Text classification, except for vertical 
retrieval, is used in spam detecting and in sentiment analysis. 
Many classification algorithms have been developed and 
different algorithms are used in different areas: Naïve Bayes 
algorithm, SVM algorithm, Decision tree, Neural networks, 
Rule-based algorithm, K-nearest neighbours, Logistic 
regression, etc. More about classification algorithms can be 
seen in [3], [4] and [5] and in references therein. 

Always when the classification should be applied, the first 
question is: Which algorithm should be used? Many papers 
compare the performance of various classification algorithms 
in different areas and analyse their use for document 
categorization (see for example [6], [7]). Query classification 
is more difficult, because a query is a very short text and 
because many algorithms that perform best in document 
classification are not applicable in the query classification. 
That is why many algorithms specialised only for query 
classification have been developed (see for example [8]-[10] 
and references therein). Many of these algorithms are 
applicable on specific domain, many of them are based on 
feedback of the user. This paper tests standard text 
classification algorithms with the goal of finding an algorithm 
applicable both to document and query classifications. 

The paper is organised as follows: In Section 2, short 
description of the IRS is given. Section 3 presents the 
classification algorithms that are usually used in text 
classification. Section 4 analyses the performance of different 
classification methods in classification of big documents and 
short queries. Section 5 summarises the results of provided 
experiments and gives some possible directions for the future 
work. 

II. IRS SYSTEMS 

Information retrieval system accepts the user queries in the 
text form, retrieves the corpus of the natural language text 
documents and returns the list of ranked retrieved documents. 
To speed up the searching process, IRS creates internal 
representation of the documents known as inverted index. 
Inverted index contains data about all terms in the corpus (in 
which documents the term is appearing, how many times, 
etc.), i.e., the inverted index is a structure representation of the 
unstructured corpus. The search for relevant documents is 
performed in the inverted index, instead in the unstructured 
large corpus. Simplified scheme of the IRS is given in the 
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Fig.1. 
In the structure from the Fig. 1, the inverted index is unique 

for the whole corpus. In the vertical retrieval systems, the 
documents are classified into domains, and separate inverted 
index is created for each domain. Later, searching is done only 
in one domain. This way the search time is reduced. If the 
query domain is defined correctly, the returned documents are 
the most relevant. 

III. CLASSIFICATION ALGORITHMS 

In the previous section, we mentioned searching in only one 
domain. This type of IRS system is called IRS system with 
vertical search and it requires that the classification step 
should be performed before the search. In this section, we will 
discuss preparation of data set and different classification 
algorithms in detail.  

Before running algorithms on data set, data set needs to be 
processed and prepared. The first step in text categorization is 
transforming documents, which typically are strings of 
characters, into a representation suitable for the learning 
algorithm. Information Retrieval research suggests that word 
stems work well as representation units and that their ordering 
in a document has minor importance for most classification 
tasks. This leads to an attribute-value representation of text. 
Each distinct word corresponds to a feature, with the number 
of times the word occurs in the document as its value. To 
avoid large unnecessary feature vectors, words are considered 
as features only if they are not “stop-words” (like “the”, “or”, 
etc.) and if they occur in the training data at least N times, 
where N can be configured. In addition, from Information 
Retrieval it is known that scaling the dimensions of the feature 
vector with their inverse document frequency (IDF) improves 
performance.  

Finally, all the documents from the prepared data set can be 
classified using algorithms that are recommended for text 
classification. Those algorithms are Naïve Bayes, Support 
Vector Machines (SVM) and Random forest.  

 
 

A. Naïve Bayes 

Naïve Bayes algorithm is a classification technique based 
on Bayes Theorem. It assumes that there is no relation 
between the presence of different features in a class. One 
example of Naïve Bayes classification is fruit classification. If 
an object has features such as yellow, long and sweet, we can 
consider it a banana. 

Building a model with Naïve Bayes algorithm is very easy, 
and it makes it very useful to work with large data sets. Even 
though Naïve Bayes is very simple, it is known as a very good 
performing algorithm and can outperform even highly 
sophisticated classification methods. 

There are three types of Naïve Bayes algorithm and we will 
explain them in detail. They are Gaussian Naïve Bayes, 
Multinomial Naïve Bayes and Bernoulli Naïve Bayes. 

Gaussian Naïve Bayes algorithm is variation of Naïve 
Bayes algorithm that is specifically used when the features 
have continuous values. It is assumed that all the features are 
following a Gaussian distribution. Gaussian distribution is a 
normal distribution. 

Multinomial Naïve Bayes is a Naïve Bayes variation that 
estimates the conditional probability of a particular 
word/term/token given a class as the relative frequency of the 
term t in documents belonging to class c. 
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This variation takes into account the number of occurrences 
of term t in training documents from class c, including 
multiple occurrences. 

Bernoulli Naïve Bayes is a Naïve Bayes variation that 
generates a Boolean indicator about each term of vocabulary. 
If a term does not belong to the vocabulary then 0 is 
generated, if a term belongs then 1 is generated. This variation 
generates a significantly different model from Multinomial 
because it does not take into account the number of 
occurrences of each word and because it takes into account 
the non-occurring terms within documents. Bernoulli model is 
known to make many mistakes while classifying long 
documents because it does not take into account the multiple 
occurrences of the words. 

B. SVM 

Support vector machines are based on the Structural Risk 
Minimization principle ([11], [12]) from the computational 
learning theory. The idea of structural risk minimization is to 
find a hypothesis h for which we can guarantee the lowest true 
error. The true error of h is the probability that h will make an 
error on an unseen and randomly selected test example. An 
upper limit can be used to connect the true error of a 
hypothesis h with the error of h on the training set and the 
complexity of H (measured by VC-Dimension), the 
hypothesis space containing h [9]. Support vector machines 
and the hypothesis h which (approximately) minimises this 
limit on the true error by effectively and efficiently controlling 
the VC-Dimension of H.  

Fig. 1. IRS structure 
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SVMs are universal learners. In their basic form, SVMs 
learn linear threshold function. Nevertheless, by a simple 
“plug-in” of an appropriate kernel function, they can be used 
to learn polynomial classifiers, radial basic function (RBF) 
networks and three-layer sigmoid neural nets.  

One remarkable property of SVMs is that their ability to 
learn can be independent of the dimensionality of the feature 
space. SVMs measure the complexity of hypotheses based on 
the margin with which they separate the data, not the number 
of features. This means that we can generalise even in the 
presence of very many features, if our data is separable with a 
wide margin from the hypothesis space. 

The same margin argument also suggests a heuristic for 
selecting good parameter settings for the learner (like the 
kernel width in an RBF network) [9]. The best parameter 
setting is the one that produces the hypothesis with the lowest 
VC-Dimension. This allows fully automatic parameter tuning 
without expensive cross-validation. 

C. Random Forest 

Decision tree learning is a method for approximating 
discrete-valued target functions, in which a decision tree 
represents the learned function. Learned trees can also be re-
represented as sets of if-then rules to improve human 
readability. These learning methods are among the most 
popular of inductive inference algorithms and have been 
successfully applied to a broad range of tasks from learning to 
diagnose medical causes to learning to assess credit risk of 
loan applicants. 

Random forest is a method (firstly defined in [13]) that use 
sets of decision trees on either random subsets of training 
data, or splits with randomly generated vectors, and computes 
the score as a function of these different components. Usually 
these random vectors are generated from a fixed probability 
distribution. Because of this, random vectors can be created 
by either random input selection, or random split selection. In 
addition, it is possible to create the trees in a lazy way, which 
is tailored to the particular test instance at hand in the case of 
random forests. 

IV. DOCUMENTS AND QUERY CLASSIFICATION BY 

DIFFERENT ALGORITHMS 

It appears there is a new problem in testing the system we 
used: It needs to have the corpus of classified documents and 
corpus of classified queries and for each pair 
(<document>,<query>) it should assess the relevance of the 
document to the query. There are many benchmark corpuses 
for document classification testing, and some corpuses of 
documents and queries for testing of information retrieval 
systems (such as TREC [12]), but there are not known 
corpuses that can be used in both purposes. Because of that, 
we created our own corpus containing 1225 documents that 
are taken from the Wikipedia website, and 100 queries 
suitable for searching in the document corpus. The documents 
and queries are classified into 10 classes: architecture, art, 
biology, chemistry, computer science and informatics, 

literature, mathematics, music, philosophy and physics. 
To verify that the classification method is applicable on 

bigger corpuses, we tested all presented algorithms on the 
standard benchmark corpus of documents Reuters 21578-
Apte-90Cat [14]. This corpus contains 15473 documents 
classified into 91 different classes. 

Implementation of classifiers is done using Java 
programming language. All classification algorithms are used 
from Weka 3.6.6 library. Classification model is created by 
using StringToWordVector filter from Weka. This filter is used 
to get 1000 words from each document. IDFTransform and 
TDTransform are turned on and stop list was used to filter out 
all stop words from documents. After this filter is applied, 
classifications are performed on the transformed corpus. 

We conducted the experiments on a HP ZBook 15, the basic 
parameters of which are shown in Table I. 

TABLE I 
EXPERIMENTAL SYSTEM PERFORMANCES 

CPU Intel® Core™ i7-4900MQ CPU @ 2.80GHz 
RAM 16GB 
OS Windows 8.1 Enterprise 

GPU NVIDIA Quadro K2100M 
 

The results of the document classification from the 
Wikipedia corpus are shown in the Table II. This table 
contains number and percentage of correctly classified 
instances and time needed for model creation. All values are 
average values calculated after running algorithms 10 times. 

TABLE II 
CLASSIFICATION PERFORMANCES ON WIKIPEDIA CORPUS 

 
Number/percentage 
correctly classified 

Time for model 
creation (s) 

Random Forest 1141 / 93.2% 9.05s 
Naïve Bayes 
Multinomial 

1178 / 96.1% 0.04s 

Bernoulli 
Naïve Bayes 

1120 / 91.4% 2.45s 

SVM 1161 / 94.8% 2.4s 
 

As it can be seen from Table II, the best results are achieved 
by using Naïve Bayes Multinomial algorithm. The 
number/percentage of correctly classified documents with 
Naïve Bayes Multinomial algorithm is 1178/96.1% that is 
better than SVM algorithm is used (1164/94.8%). The time 
required for model creation is also showing that best choice is 
Naïve Bayes Multinomial, as the time of 0.04s is much shorter 
than SVM with 2.4s. 

All algorithms are applied on classification of documents 
from the “Reuters 21578-Apte-90Cat” corpus. Results of 
these experiments are shown in Table III. 
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TABLE III 
CLASSIFICATION PERFORMANCES ON REUTERS 21578 CORPUS 

 
Number/percentage 
correctly classified 

Time for model 
creation (s) 

Random 
Forest 

2502 / 62.1769% 2716.38 

Naïve Bayes 
Multinomial 

2867 / 71.25% 3.27 

Bernoulli 
Naïve Bayes 

2647 / 65.78% 56.32 

SVM 2923 / 72.64% 87.57 
 

From Table III we can see that SVM has slightly better 
results than Naïve Bayes Multinomial, but it is around 26 
times slower. Because SVM and Naïve Bayes Multinomial 
have similar number of correctly classified documents, but 
Naïve Bayes Multinomial algorithm is much faster, this makes 
Naïve Bayes Multinomial algorithm a better choice for 
vertical IR system. 

Results of executing classification algorithms on the search 
query corpus are given in Table IV. The results from Table IV 
show that the most applicable algorithm in query 
classification is Naïve Bayes Multinomial algorithm. 

TABLE IV 
CLASSIFICATION PERFORMANCES ON SEARCH QUERY CORPUS 

 
Number/percentage 
correctly classified 

Random Forest 12/11.77% 
Naïve Bayes Multinomial 95/93.14% 

Bernoulli Naïve Bayes 18/17.65% 
SVM 23/22.55% 

 

A comparative review of the correctly classified documents 
by all algorithms on all three corpuses is shown in the Fig 2. 

V. CONCLUSION 

After looking into the results of Random Forest, Naïve 
Bayes Multinomial, Bernoulli Naïve Bayes and SVM that 

were compared on two different corpuses of documents, we 
can clearly see that Naïve Bayes Multinomial and SVM 
algorithms which have the best results in terms of the number 
of correctly classified documents. Naïve Bayes Multinomial 
shows a better time for model creation and for running 
classification. However, based on the best results in the query 
classification, the Naïve Bayes Multinomial is the best 
solution for the vertical retrieval systems.  

For future work, the system can be improved by using 
different classification methods for document and query 
classification. In that case, for query classification some 
specialised algorithm for query classification or for short text 
classification (such as LSA [16], Bag of concepts [17] etc.) 
can be applied. 
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