

127

Analysis of Classification Algorithms for using in
Vertical Retrieval Systems
Nemanja Popović1 and Suzana Stojković2

Abstract – Classification is the most solved and the most used
machine learning problem. In a last few decades many
classification algorithms have been developed. Because of that,
when classification is needed in some problem solving, the best
algorithm should always be selected. The problem that is
analysed in this paper is choosing classification algorithms that
can be used in vertical retrieval system for both document and
query classification. We compared SVM, Multinomial Naïve
Bayes algorithm, Bernoulli Naïve Bayes algorithm and Random
forest. The experiments presented in the paper, show that in the
long documents classification SVM and Multinomial Naïve Bayes
algorithms have a similar precision (SVM is a little better), but
the Multinomial Naive Bayes algorithm correctly classified
93.14% of queries, while SVM only 22.55%.

Keywords – Information retrieval, Vertical retrieval, Text
classification, Naïve Bayes classifier, SVM classifier, Random
forest.

I. INTRODUCTION

Information retrieval systems (IRS) [1] are the systems the
goal of which is to find the documents in the large corpus of
the documents that contain information that the user needs.
The corpuses that are retrieved increase very fast. For
example, in the Web searching, the retrieving corpus consists
of all documents on the Web. That is why finding the
information that the user needs gets harder and harder.

There are three basic requirements that IRS should satisfy:
 Response time should be as short as possible.
 The number of selected documents should not be too

large.
 Retrieved documents should be relevant to the user

query.
To improve all these parameters, vertical search (search on

the given domain) [2] is often used. In the vertical retrieval
systems, the documents from the corpus are classified in the
set of the domains and the user specifies the query and the
domain in which the search should be done. Users of the
retrieval systems often are not experts in the domain of its
queries, and they cannot specify the domain in the right way.
Our idea is to automatically detect the query domain, i.e., to
classify the queries on the similar ways as the documents in
the corpus. The first step in that process is to choose the
classification algorithm that can be applied in both document
and query classification.

Classification problem is a very often solved machine
learning problem. Its goal is to predict the value of the
unknown class attribute based on the set of values of the
known attributes. Now, classification is used in many science
areas: in medicine (to classify the results of various analyses)
in speech recognition, in OCR systems, etc. and, of course, in
text classification. Text classification, except for vertical
retrieval, is used in spam detecting and in sentiment analysis.
Many classification algorithms have been developed and
different algorithms are used in different areas: Naïve Bayes
algorithm, SVM algorithm, Decision tree, Neural networks,
Rule-based algorithm, K-nearest neighbours, Logistic
regression, etc. More about classification algorithms can be
seen in [3], [4] and [5] and in references therein.

Always when the classification should be applied, the first
question is: Which algorithm should be used? Many papers
compare the performance of various classification algorithms
in different areas and analyse their use for document
categorization (see for example [6], [7]). Query classification
is more difficult, because a query is a very short text and
because many algorithms that perform best in document
classification are not applicable in the query classification.
That is why many algorithms specialised only for query
classification have been developed (see for example [8]-[10]
and references therein). Many of these algorithms are
applicable on specific domain, many of them are based on
feedback of the user. This paper tests standard text
classification algorithms with the goal of finding an algorithm
applicable both to document and query classifications.

The paper is organised as follows: In Section 2, short
description of the IRS is given. Section 3 presents the
classification algorithms that are usually used in text
classification. Section 4 analyses the performance of different
classification methods in classification of big documents and
short queries. Section 5 summarises the results of provided
experiments and gives some possible directions for the future
work.

II. IRS SYSTEMS

Information retrieval system accepts the user queries in the
text form, retrieves the corpus of the natural language text
documents and returns the list of ranked retrieved documents.
To speed up the searching process, IRS creates internal
representation of the documents known as inverted index.
Inverted index contains data about all terms in the corpus (in
which documents the term is appearing, how many times,
etc.), i.e., the inverted index is a structure representation of the
unstructured corpus. The search for relevant documents is
performed in the inverted index, instead in the unstructured
large corpus. Simplified scheme of the IRS is given in the

1Nemanja Popović is with the Faculty of Electronic Engineering at
University of Niš, Aleksandra Medvedeva 14, 1800 Niš, E-mail:
nemanja.popovic@outlook.com

2Suzana Stojković is with the Faculty of Electronic Engineering at
University of Niš, Aleksandra Medvedeva 14, 1800 Niš, E-mail:
suzana.stojkovic@elfak.ni.ac.rs

128

Fig.1.
In the structure from the Fig. 1, the inverted index is unique

for the whole corpus. In the vertical retrieval systems, the
documents are classified into domains, and separate inverted
index is created for each domain. Later, searching is done only
in one domain. This way the search time is reduced. If the
query domain is defined correctly, the returned documents are
the most relevant.

III. CLASSIFICATION ALGORITHMS

In the previous section, we mentioned searching in only one
domain. This type of IRS system is called IRS system with
vertical search and it requires that the classification step
should be performed before the search. In this section, we will
discuss preparation of data set and different classification
algorithms in detail.

Before running algorithms on data set, data set needs to be
processed and prepared. The first step in text categorization is
transforming documents, which typically are strings of
characters, into a representation suitable for the learning
algorithm. Information Retrieval research suggests that word
stems work well as representation units and that their ordering
in a document has minor importance for most classification
tasks. This leads to an attribute-value representation of text.
Each distinct word corresponds to a feature, with the number
of times the word occurs in the document as its value. To
avoid large unnecessary feature vectors, words are considered
as features only if they are not “stop-words” (like “the”, “or”,
etc.) and if they occur in the training data at least N times,
where N can be configured. In addition, from Information
Retrieval it is known that scaling the dimensions of the feature
vector with their inverse document frequency (IDF) improves
performance.

Finally, all the documents from the prepared data set can be
classified using algorithms that are recommended for text
classification. Those algorithms are Naïve Bayes, Support
Vector Machines (SVM) and Random forest.

A. Naïve Bayes

Naïve Bayes algorithm is a classification technique based
on Bayes Theorem. It assumes that there is no relation
between the presence of different features in a class. One
example of Naïve Bayes classification is fruit classification. If
an object has features such as yellow, long and sweet, we can
consider it a banana.

Building a model with Naïve Bayes algorithm is very easy,
and it makes it very useful to work with large data sets. Even
though Naïve Bayes is very simple, it is known as a very good
performing algorithm and can outperform even highly
sophisticated classification methods.

There are three types of Naïve Bayes algorithm and we will
explain them in detail. They are Gaussian Naïve Bayes,
Multinomial Naïve Bayes and Bernoulli Naïve Bayes.

Gaussian Naïve Bayes algorithm is variation of Naïve
Bayes algorithm that is specifically used when the features
have continuous values. It is assumed that all the features are
following a Gaussian distribution. Gaussian distribution is a
normal distribution.

Multinomial Naïve Bayes is a Naïve Bayes variation that
estimates the conditional probability of a particular
word/term/token given a class as the relative frequency of the
term t in documents belonging to class c.




teV
ct

ct

T

T
ctP)|(

This variation takes into account the number of occurrences
of term t in training documents from class c, including
multiple occurrences.

Bernoulli Naïve Bayes is a Naïve Bayes variation that
generates a Boolean indicator about each term of vocabulary.
If a term does not belong to the vocabulary then 0 is
generated, if a term belongs then 1 is generated. This variation
generates a significantly different model from Multinomial
because it does not take into account the number of
occurrences of each word and because it takes into account
the non-occurring terms within documents. Bernoulli model is
known to make many mistakes while classifying long
documents because it does not take into account the multiple
occurrences of the words.

B. SVM

Support vector machines are based on the Structural Risk
Minimization principle ([11], [12]) from the computational
learning theory. The idea of structural risk minimization is to
find a hypothesis h for which we can guarantee the lowest true
error. The true error of h is the probability that h will make an
error on an unseen and randomly selected test example. An
upper limit can be used to connect the true error of a
hypothesis h with the error of h on the training set and the
complexity of H (measured by VC-Dimension), the
hypothesis space containing h [9]. Support vector machines
and the hypothesis h which (approximately) minimises this
limit on the true error by effectively and efficiently controlling
the VC-Dimension of H.

Fig. 1. IRS structure

129

SVMs are universal learners. In their basic form, SVMs
learn linear threshold function. Nevertheless, by a simple
“plug-in” of an appropriate kernel function, they can be used
to learn polynomial classifiers, radial basic function (RBF)
networks and three-layer sigmoid neural nets.

One remarkable property of SVMs is that their ability to
learn can be independent of the dimensionality of the feature
space. SVMs measure the complexity of hypotheses based on
the margin with which they separate the data, not the number
of features. This means that we can generalise even in the
presence of very many features, if our data is separable with a
wide margin from the hypothesis space.

The same margin argument also suggests a heuristic for
selecting good parameter settings for the learner (like the
kernel width in an RBF network) [9]. The best parameter
setting is the one that produces the hypothesis with the lowest
VC-Dimension. This allows fully automatic parameter tuning
without expensive cross-validation.

C. Random Forest

Decision tree learning is a method for approximating
discrete-valued target functions, in which a decision tree
represents the learned function. Learned trees can also be re-
represented as sets of if-then rules to improve human
readability. These learning methods are among the most
popular of inductive inference algorithms and have been
successfully applied to a broad range of tasks from learning to
diagnose medical causes to learning to assess credit risk of
loan applicants.

Random forest is a method (firstly defined in [13]) that use
sets of decision trees on either random subsets of training
data, or splits with randomly generated vectors, and computes
the score as a function of these different components. Usually
these random vectors are generated from a fixed probability
distribution. Because of this, random vectors can be created
by either random input selection, or random split selection. In
addition, it is possible to create the trees in a lazy way, which
is tailored to the particular test instance at hand in the case of
random forests.

IV. DOCUMENTS AND QUERY CLASSIFICATION BY

DIFFERENT ALGORITHMS

It appears there is a new problem in testing the system we
used: It needs to have the corpus of classified documents and
corpus of classified queries and for each pair
(<document>,<query>) it should assess the relevance of the
document to the query. There are many benchmark corpuses
for document classification testing, and some corpuses of
documents and queries for testing of information retrieval
systems (such as TREC [12]), but there are not known
corpuses that can be used in both purposes. Because of that,
we created our own corpus containing 1225 documents that
are taken from the Wikipedia website, and 100 queries
suitable for searching in the document corpus. The documents
and queries are classified into 10 classes: architecture, art,
biology, chemistry, computer science and informatics,

literature, mathematics, music, philosophy and physics.
To verify that the classification method is applicable on

bigger corpuses, we tested all presented algorithms on the
standard benchmark corpus of documents Reuters 21578-
Apte-90Cat [14]. This corpus contains 15473 documents
classified into 91 different classes.

Implementation of classifiers is done using Java
programming language. All classification algorithms are used
from Weka 3.6.6 library. Classification model is created by
using StringToWordVector filter from Weka. This filter is used
to get 1000 words from each document. IDFTransform and
TDTransform are turned on and stop list was used to filter out
all stop words from documents. After this filter is applied,
classifications are performed on the transformed corpus.

We conducted the experiments on a HP ZBook 15, the basic
parameters of which are shown in Table I.

TABLE I
EXPERIMENTAL SYSTEM PERFORMANCES

CPU Intel® Core™ i7-4900MQ CPU @ 2.80GHz
RAM 16GB
OS Windows 8.1 Enterprise

GPU NVIDIA Quadro K2100M

The results of the document classification from the
Wikipedia corpus are shown in the Table II. This table
contains number and percentage of correctly classified
instances and time needed for model creation. All values are
average values calculated after running algorithms 10 times.

TABLE II
CLASSIFICATION PERFORMANCES ON WIKIPEDIA CORPUS

Number/percentage
correctly classified

Time for model
creation (s)

Random Forest 1141 / 93.2% 9.05s
Naïve Bayes
Multinomial

1178 / 96.1% 0.04s

Bernoulli
Naïve Bayes

1120 / 91.4% 2.45s

SVM 1161 / 94.8% 2.4s

As it can be seen from Table II, the best results are achieved
by using Naïve Bayes Multinomial algorithm. The
number/percentage of correctly classified documents with
Naïve Bayes Multinomial algorithm is 1178/96.1% that is
better than SVM algorithm is used (1164/94.8%). The time
required for model creation is also showing that best choice is
Naïve Bayes Multinomial, as the time of 0.04s is much shorter
than SVM with 2.4s.

All algorithms are applied on classification of documents
from the “Reuters 21578-Apte-90Cat” corpus. Results of
these experiments are shown in Table III.

130

TABLE III
CLASSIFICATION PERFORMANCES ON REUTERS 21578 CORPUS

Number/percentage
correctly classified

Time for model
creation (s)

Random
Forest

2502 / 62.1769% 2716.38

Naïve Bayes
Multinomial

2867 / 71.25% 3.27

Bernoulli
Naïve Bayes

2647 / 65.78% 56.32

SVM 2923 / 72.64% 87.57

From Table III we can see that SVM has slightly better
results than Naïve Bayes Multinomial, but it is around 26
times slower. Because SVM and Naïve Bayes Multinomial
have similar number of correctly classified documents, but
Naïve Bayes Multinomial algorithm is much faster, this makes
Naïve Bayes Multinomial algorithm a better choice for
vertical IR system.

Results of executing classification algorithms on the search
query corpus are given in Table IV. The results from Table IV
show that the most applicable algorithm in query
classification is Naïve Bayes Multinomial algorithm.

TABLE IV
CLASSIFICATION PERFORMANCES ON SEARCH QUERY CORPUS

Number/percentage
correctly classified

Random Forest 12/11.77%
Naïve Bayes Multinomial 95/93.14%

Bernoulli Naïve Bayes 18/17.65%
SVM 23/22.55%

A comparative review of the correctly classified documents
by all algorithms on all three corpuses is shown in the Fig 2.

V. CONCLUSION

After looking into the results of Random Forest, Naïve
Bayes Multinomial, Bernoulli Naïve Bayes and SVM that

were compared on two different corpuses of documents, we
can clearly see that Naïve Bayes Multinomial and SVM
algorithms which have the best results in terms of the number
of correctly classified documents. Naïve Bayes Multinomial
shows a better time for model creation and for running
classification. However, based on the best results in the query
classification, the Naïve Bayes Multinomial is the best
solution for the vertical retrieval systems.

For future work, the system can be improved by using
different classification methods for document and query
classification. In that case, for query classification some
specialised algorithm for query classification or for short text
classification (such as LSA [16], Bag of concepts [17] etc.)
can be applied.

REFERENCES

[1] C.D. Manning, P. Raghavan, and H. Schutze, An Introduction to
Information Retrieval, Cambridge University Press, Cambridge,
England, 2009.

[2] B. John, The Search: How Google and its Rivals Rewrote the
Rules of Business and Transformed Our Culture. New York:
Portfolio, 2005.

[3] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification,
Second edition, Wieley Interscience, 2000.

[4] J. Han, and M. Kamber, Data Mining: Concepts and
Techniques, Second edition, Elsevier, 2006.

[5] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining, Addison Wesley, 2006.

[6] A. Mahinovs, and A. Tiwari, “Text Classification Method
Review”, Decision Engineering Report Series, Edited by
Rajkumar Roy and David Baxter, Cranfield University, 2005.

[7] Y.H. Li, and K. Jain, “Classification of Text Documents”, The
Computer Journal, vol. 41, no. 8, pp. 537-546, 1998.

[8] D.-T. Le, and R. Bernardi, “Query Classification Using Topic
Models and Support Vector Machine”, 2012 Student Research
Workshop, pp. 19-24, Jeju, Republic of Korea, 2012.

[9] M. Alemzadeh, F. Karray, and R. Khoury, “Query Classification
using Wikipedia's Category Graph”, Journal of Emerging
Technologies in Web Intelligence, vol. 4, no. 3, pp. 207-220,
2012.

[10] C. Xia, and X. Wang, “Graph-Based Web Query
Classification”, 12th Web Information System and Application
Conference, pp. 241-244, 2015.

[11] C. Cortes, and V. Vapnik, “Support-Vector Networks”, Machine
Learning, vol. 20, pp. 273-297, November 1995.

[12] V.N. Vapnik, The Nature of Statistical Learning Theory,
Springer, New York, 1995.

[13] T.K. Ho, “Random Decision Forest”, 3rd International
Conference on Document Analysis and Recognition, Montreal,
QC, pp. 278-282,1995.

[14] Reuters-21578 Text Categorization Collection available at
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
(last access 14.3.2017)

[15] TREC Retrieval Conference, available on http://trec.nist.gov/
(lass access 14.3.2017)

[16] S.T. Dumais, ""Latent Semantic Analysis", Annual Review of
Information Science and Technology, 2005.

[17] M. Sahlgren, and R. Cöster. “Using Bag-of-Concepts to
Improve the Performance of Support Vector Machines in Text
Categorization”, 20th Intern. Conf. on the Computational
Linguistics, Article no. 487, Geneva, Switzerland, 2004.

Fig. 2. Comparison of classification algorithms on different testing

corpuses RS structure

