

131

CSPlag: A Source Code Plagiarism Detection Using
Syntax Trees and Intermediate Language

Darko Puflović1, Milena Frtunić Gligorijević2 and Leonid Stoimenov3

Abstract – Different techniques can be used to detect
plagiarism in the source code. However, they do not always give
good results, especially when the code is deliberately altered to
disguise the copied parts from different sources. This paper
describes an approach that uses the syntax and semantic analysis
of the code to perform the necessary pre-processing steps, and
then compare the obtained abstract syntax trees and
intermediate language code to determine the precise amount and
the locations of the plagiarized code.

Keywords – Plagiarism detection, Source code, Abstract syntax
trees, Intermediate language, n-gram.

I. INTRODUCTION

With increasing quantity of source code and its availability
on the internet there is an increasing need for a system that
can detect plagiarism inside newly written ones. A number of
solutions that can be used to deal with this problem already
exist [1]. These systems use various technologies to identify
plagiarism inside specific languages or across variety of
different ones.

However, these solutions are somewhat outdated and can’t
cope with a growing number of features in new and updated
versions of programming languages. The majority of
compilers these days are open source and provides the tools
for syntax and semantic analysis through APIs, so that
information obtained through them can provide more detailed
and accurate analysis that can assist in the detection of the
more complex plagiarism cases.

Syntax and semantic analysis are used to transform syntax
trees into more generic representations that are afterwards
going to be used to determine similarity between them in
combination with the intermediate language code that is
obtained by compiling original source. These procedures will
be presented on the example of the C# programming
language, using .NET Compiler Platform1, but it can also be
used on codes written in other programming languages, like
Visual Basic.NET, F#, IronPython, IronRuby and other .NET
languages. Also, with minor changes, it can be used for other
languages that offer a similar set of tools for syntax and

1 .NET Compiler Platform - https://github.com/dotnet/roslyn/

semantic analysis, such as Swift, Kotlin and others.
In the next section, an overview of some solutions that are

commonly used to detect plagiarism will be given. Section 3
provides information on the benefits of the proposed
approach.

II. RELATED WORK

The problem of plagiarism detection occurs in different areas
and forms. Using the code without crediting author is a
copyright infringement as well as the use of any other material
without author’s permission. Source code plagiarism may
appear in academic environments, but also in companies.
Different environments and levels of knowledge of
programming languages can bring a diversity of methods that
can be used to accomplish same task. This makes the problem
of detecting different types of plagiarism difficult.

There are a number of solutions that can cope with various
types of plagiarism in different ways [2]. Most of the
problems that occur during the task of detection are mainly
related to the definition of the plagiarism in source code. The
different levels at which they can occur carry different criteria
by which it is necessary to determine what can be considered
plagiarism.

Less knowledge of the language syntax diversity offers
fewer ways in which that code can be altered and those
alterations often represent smaller challenge to the detection
system. With increasing knowledge of the possibilities that
language offers, there are growing opportunities to hide
intention and to make detection process more difficult.
Nevertheless, this is not the only problem, because every task
set before the developer has a limited number of solutions. It
is hard to determine how much change in code is enough to
consider code original.

Most of the plagiarism detection tools are designed to work
inside academic environment, mostly due to their primary use
in reviewing students’ work.

Existing plagiarism detection tools [1] use variety of
techniques to accomplish that task. Some solutions, like
Plaggie [3] can detect similarities across files in one
programming language, in this case Java. Few other solutions,
namely CodeMatch [4], JPlag [5] and MOSS [6] use different
approaches to make sense of plagiarism across large number
of languages.

Sherlock [7] uses an approach similar to natural language
processing. Taking into account all the elements of the syntax,
Sherlock can detect, with a great precision, verbatim copies of
code. On the other hand, any change in identifier names,
comments or order in which operands appear can be
misleading for the system.

1Darko Puflović is with the Faculty of Electronic Engineering at
University of Niš, Aleksandra Medvedeva 14, Niš, 18000, Serbia,
E-mail: darko.puflovic@elfak.ni.ac.rs

2Milena Frtunić Gligorijević is with Faculty of Electronic
Engineering at University of Niš, Aleksandra Medvedeva 14, Niš,
18000, Serbia, E-mail: milena.frtunic.gligorijevic@elfak.ni.ac.rs

3Leonid Stoimenov is with Faculty of Electronic Engineering at
University of Niš, Aleksandra Medvedeva 14, Niš, 18000, Serbia,
E-mail: leonid.stoimenov@elfak.ni.ac.rs

132

CodeMatch combines algorithms to match different types
of syntax. Numerous programming languages that are
supported by this tool give more options to its users, but also
give worse results in few cases when knowledge about
specific language is of great importance, like when identifier
names are changed.

JPlag is well-known online plagiarism detection tool that
takes language structure into consideration. The only
modifications that represented the challenge for this tool were
due to the change in order of the code parts. Those
modifications occur mostly during method extractions.

MOSS is another well-known tool with online access.
Detection of the places where plagiarism occurs is one
possibility. Large number of programming languages are
supported, and that is the reason behind bad results in case of
complex transformations of the code that can mislead this
tool. Like JPlag, more information about specific
programming languages are needed to make better judgment.

Most of these solutions are designed to work with a variety
of programming languages and examine similar aspects that
appear in all of them. However, this approach doesn’t give the
best results in cases when it is necessary to recognize copied
parts of code that are deliberately altered to conceal the
intention to use someone else’s code with low possibility of
being detected.

There are other attempts to utilize different methods from
natural language processing [8], even machine learning [9],
but all of these methods are lacking deeper understanding of
code semantics. On the other hand, having all the information
about syntax and semantics in the code, gives all the
information needed for analysis of one programming
language, but makes that approach hardly usable on source
code written in different language.

III. PROPOSED APPROACH

Although the results that we have obtained by using tools
described in chapter 2 are good, it is easy to intentionally
change source code in order to confuse the tool into thinking
that code isn’t plagiarized. Those kinds of changes are easy
for human to apply, but hard to spot by an automatic tool. To
enable detection of this kind of plagiarism, it is necessary to
transform code first into more generic form, and then use
comparison methods that have more information about code
itself.

.NET Compiler Platform provides access to internal
mechanisms of the C# and Visual Basic.NET compilers. In
this way, it is possible to access information that compiler use
in the translation process of the code into intermediate
language and to obtain intermediate language itself for further
analysis. Through syntax analysis of the code, it is possible to
get information about syntax nodes inside syntax tree, but also
the tokens and trivia from the parts of that tree. In most cases,
this information is valuable enough for simpler
transformations, but more complicated ones require
knowledge of semantic code features, like data types,
namespaces that contain certain class or list of unused using
directives. This information can be provided through semantic
APIs, that are part of the compiler. The combination of those

two APIs can provide sufficient information necessary to
transform original code into the representation that is more
suitable for comparison.

Before the analysis of the code, some pre-processing steps
have to take place first. The task of pre-processing is to ensure
that the codes have the same representation of similar syntax
elements so that further analysis process is not disturbed by
these changes.

A. Pre-Processing of the Source Code

Pre-processing steps, that are going to be described below,
include loop and if to switch statement transformations,
replacement of unary operators with their expended form, and
using of full namespace paths for classes and class members.
These transformations were chosen because they are
commonly used to conceal plagiarized parts of the code.

There are several implementations of loops in C#
programming language, but they all have similar role in the
source code. The author may deliberately exchange one type
of loop for another to mask the copied part of the code. Using
syntactic analysis, it is possible to translate all different kinds
of loops in while loop. One possible problem, during this
transformation is the scope of the variables defined before the
loop. This problem can be solved by placing the loop code
inside the block syntax. One more problem is transformation
of the foreach loop that does not access elements in the same
way as the other loops. It is possible, however, to place the
current pointer to the element of the collection inside variable
and to call MoveNext method in every iteration of the loop.

Another potential problem for detection of the similarity
may be the use of switch statements instead of if, else if or
else statements. Transformation of switch statement can be
problematic due to the possibility of using jump instructions,
but it is possible to eliminate these problems and produce the
code that works in the same way as before the change.

Using unary operators it is possible to change syntax tree
without modifying program output by adding just a few
characters to the code. Just one example of these
transformations is the use of plus (+) operator before numeric
literal. In most cases, source code contains only minus
operator when it is necessary to store negative number, but
adding plus sign before number doesn’t change the result, but
does change syntax of the code. Another transformation that is
necessary to do is to change prefix and postfix increment and
decrement operators (i++, i--, ++i, --i) in the full form using
plus and minus operators, number literal 1 and equals
expression (i = i + 1). This transformation does not have to be
the result of a deliberate attempt to mask plagiarism, but also
different style that author uses to write his code. One more
transformation is the replacement of the assignment with
operation into full form (i += 10 into i = i + 10). Operations
that can be used inside this expression are plus (+), minus (-),
divide (/), multiply (*), modulo (%), and (&), or (|), exclusive
or (^), left shift (<<) and right shift (>>).

Due to the large number of classes, which sometimes have
the same name, the use of different namespaces can alter the
program behavior. Using directives allow the usage of shorter
namespace names that can appear in the code as substitute for
longer ones inside these directives. Newer versions of C#

133

programming language offer the ability to use “using static”
directive that allows all static members of the class to be used
directly from code, without specifying class name. All these
features make programming easier, but also open the door to
possibilities for masking copied parts of the code. The
transformation that is part of the pre-processing of the code
allow replacement of all methods, delegates, properties, fields,
events, classes, structures and interfaces into fully qualified
names that include alias (global or extern alias) and whole
namespace. In the case of using static directive, class
members can be replaced with fully qualified name with the
class name they belong.

After all identifiers are replaced with fully qualified
names, it is possible to remove unnecessary using directives
from code. This step is optional since sometimes unnecessary
using directives can be valuable for determining if the entire
file is a copy.

The list of pre-processing transformations doesn’t end here
and contains some steps that mostly deal with literal changes,
like replacements of numeric literal values with expression
that evaluates the same result (e.g. 40 with 10 + 30) or
replacing characters inside string literals with the same
Unicode values (e.g. "s" with "\u0073").

B. Similarity Measures

Once the pre-processing transformations are completed,

the task of identifying similarities inside the code can begin.
This approach uses 3 different techniques to detect plagiarism:

 Comparison of the abstract syntax trees [10, 11]
 Comparison of the source code text
 Comparison of the intermediate language

Transformed syntax trees contain information about whole
expressions, nodes and trivia. Syntax nodes and trivia consist
of too specific information to be used in detection, but they
are part of expressions. The task of comparing the similarities
has to start from the comparison of the expressions on the
same level and depth of syntax tree.
By comparing the expressing types and specific information
about that type of expression it is possible to dismiss many of
those that are not similar in any way. Ones that are potentially
similar are used in further analysis by comparing syntax nodes
and trivia that they consist of.

Identifier names may be taken into consideration or not
during the comparison, which can help to identify intentional
changes to cover up copied code. Another problem that has to
be addressed is the usage of extract method refactoring that
enables expressions to be moved to another method that can
be called from the first one. Using syntax information it is
easy to find the location of the original expressions and
replace values of parameters inside them with original values
from the starting method. In this way, it is possible to identify
even those cases with great accuracy. Finding a set of subtrees
that contains the same information in two syntax trees can be
used to display similarity results in different ways. Two of the
simplest ones are using the similarity measure in percentage

and by labeling the text representation so the user can see and
compare them.

Pre-processed syntax trees can be represented as source
code text as well. Using tokenization, that text can be divided
that enables the creation of the n-gram models. These models
can be further used to calculate probabilities of element
occurrence inside the source code. Comparing these
probabilities it is possible to conclude what percentage of the
code is plagiarized and to show that parts of the code as well.
Resolving fully quantified names of identifiers plays crucial
role in this step by enabling detection of similar parts of code
without a lot of mistakes during the process. Likewise, this
reduces the impact of the non-similar parts, because it
dramatically increases the number of tokens in the code.
Anyway, this comparison provides insight into similarities
which are located in different parts of the code which can be
useful in cases of extracted methods, when the code is not in
the same method in original and plagiarized versions of the
code.

A previous method work great on the text representation of
the code, but don’t really help identifying similarities in
results and are related to the programming language C#.
Comparison of the intermediate language allows these two
issues to be addressed. Intermediate code (IL) generated from
any .NET language can be represented using the similar set of
IL instructions. Those instructions are emitted after compiler
optimizations that make them even more suitable for
analyzing output results of the code. IL instruction consists of
the label, instruction and, if there is a need, argument (e.g.
IL_0000: ldc.i4.3). Creating n-gram model out of the pair that
consists of instruction and argument can be used to detect
similar parts of the code and show that similarity in the same
way as the previous approaches.

C. Results

CSPlag, described in this paper was tested on four pairs of

source codes written for this purpose. Results of these
comparisons are shown in Table 1 and will be discussed in the
following paragraphs.

TABLE I
COMPARISON WITH JPLAG AND MOSS

Tool 1. 2. 3. 4.
Expected results 100% 50% 15% 0%
JPlag 100% 25.8% 26% NA
MOSS 53% NA NA NA
CSPlag 100% 43% 11% 4%

The first pair of codes contains identical expressions with

altered identifier names, one extracted method and using few
labels and jumps. JPlag proved to be very reliable in this task,
but MOSS had troubles, stopping at the first jump without
detecting rest of the copied code.

The second pair consists of two different source codes
with copied loops that are exchanged in second file into
different kind of loop (for loop into while and foreach) and if,
else statements are replaced by switch statement in the second

134

file. JPlag recognized some statements but had issues
recognizing loop replacements and similarities between if,
else statements and their switch substitute. MOSS, on the
other hand, didn’t recognize similarity sufficiently large to
notify the user about potential plagiarism. Pre-processing
techniques that CSPlag use had impact on result which is
higher than in the first two systems.

The third pair of codes contains few statements that have
the same name but represent calls to different methods and
few others that use different name for namespace identifier,
but represent the same namespace. In this case JPlag
recognizes all method calls, regardless of what namespace
they belong, as the same method call. The result reflects the
situation by showing slightly higher percent of similarity then
there is in the code. MOSS on the other hand gives no results
in this case again, because of the altered namespaces in the
calls. CSPlag detected these changes and didn’t recognize
these pieces of code as similar ones which caused lower
similarity.

Finally, last pair consists of different codes and results in
all three approaches gave good results on this task.

IV. DISCUSSION AND CONCLUSION

Applying pre-processing to the source code and syntax
trees proved to be very successful and of great importance in
the overall similarity detection. Some refactoring tools that
come preinstalled in development environments can obstruct
the task of plagiarism detection. Those tools use syntax and
semantic analysis to change original code, so the easiest way
to counteract their effect is to use the same techniques to
transform code back into original state.

In cases where the developer intentionally changes the
parts of the code to cover traces of copied parts, those
transformations can provide considerably better similarity
results. Similar syntax and semantic information is of great
help even in the process of syntax tree comparison, where it is
possible to exclude irrelevant information for even better
accuracy. In combination with intermediate language
comparison, precision of the plagiarism detection can be even
more improved and in addition to that, it allows comparison of
the codes written in different languages.

On the other hand, transformations are not mandatory and
similarity can be obtained even without doing any pre-
processing steps. List of pre-processing steps is not limited to

ones described in this paper and it is possible to write new
ones that can deal with some other forms of plagiarism that
are not the part of the system today.

REFERENCES

[1] V.T. Martins, F. Daniela, H.P. Rangel, and C. Daniela,
"Plagiarism Detection, A Tool Survey and Comparison", 3rd
Symposium on Languages, Applications and Technologies,
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, vol. 38,
pp. 143-158, 2014.

[2] M. Agrawal, and D.K. Sharma, "A State of Art on Source Code
Plagiarism Detection", 2nd International Conference on Next
Generation Computing Technologies, pp. 236-241, 2016, doi:
10.1109/NGCT.2016.7877421.

[3] A. Ahtiainen, S. Surakka, and M. Rahikainen, "Plaggie: GNU-
Licensed Source Code Plagiarism Detection Engine for Java
Exercises", 6th Baltic Sea conference on Computing Education
Research: Koli Calling 2006, pp. 141-142, 2006.

[4] P. Modiba, V. Pieterse, and B. Haskins, "Evaluating Plagiarism
Detection Software for Introductory Programming
Assignments", Computer Science Education Research
Conference, pp. 37-46, ACM, 2016.

[5] L. Prechelt, G. Malpohl, and M. Phlippsen, "JPlag: Finding
Plagiarisms Among a Set of Programs", Technical report,
Fakultat for Informatik, Universitat Karlsruhe, 2000.

[6] S. Schleimer, D.S. Wilkerson, and A. Aiken, "Winnowing:
Local Algorithms for Document Fingerprinting", 2003 ACM
SIGMOD International Conference on Management of Data
(SIGMOD'03), New York, NY, USA, pp. 76-85, 2003.

[7] J. Hage, P. Rademaker, and N. Vugt, "A Comparison of
Plagiarism Detection Tools", Utrecht University, Utrecht,
Netherlands, pp. 28, 2010.

[8] M. Chilowicz, E. Duris, G. Roussel, "Syntax TREE
Fingerprinting: A Foundation for Source Code Similarity
Detection", 2009.

[9] M. AlSallal, R. Iqbal, S. Amin, A. James, and V. Palade, "An
Integrated Machine Learning Approach for Extrinsic Plagiarism
Detection", 9th International Conference on Developments in
eSystems Engineering (DeSE), pp. 203-208, Liverpool, United
Kingdom, 2016.

[10] H. Kikuchi, T. Goto, M. Wakatsuki, and T. Nishino, "A Source
Code Plagiarism Detecting Method Using Sequence Alignment
with Abstract Syntax Tree Elements", International Journal of
Software Innovation (IJSI), pp. 41-56, 2015.

[11] M. Chilowicz, E. Duris, and G. Roussel, "Syntax Tree
Fingerprinting for Source Code Similarity Detection", IEEE
17th International Conference on Program Comprehension,
Vancouver, Canada, pp. 243-247, 2009.

