

157

Ontology and Reasoning on Device Connectivity
Evelina Pencheva1, Ivaylo Atanasov1, Anastas Nikolov1, Rozalina Dimova2

Abstract – In this paper, we present an approach to cloud
application orchestration. The approach allows detection and
resolution of interactions among cloud applications. The
approach is based on ontology for IoT device connectivity. It is
illustrated for applications which add functionality to basic
bearer selection procedure.

Keywords – Connectivity management, Cloud orchestration,
Diagnostic and monitoring traps, Ontology, Reasoning.

I. INTRODUCTION

The amount of data generated by connected device
increases exponentially with the ubiquitous penetration of
Internet of Things (IoT). Cloud computing is a way to
alleviate the data problem. It involves delivering data,
applications, multimedia and more over the Internet to data
centers. Both technologies serve to increase efficiency in
different application areas.

Device-to-cloud communication involves an IoT device
connecting directly to an Internet cloud application to
exchange data and control message traffic. It often uses
wireless connections, but can also use cellular technology [1],
[2]. Different technologies have different requirements for
quality of service (QoS), which complicates the logic for
bearer selection. Furthermore, the logic for bearer selection
may be based on different policies such as the device location
and the requirements for charging.

Cloud connectivity lets an application to obtain remote
access to a device. It also potentially supports pushing
software updates to the device.

Cloud orchestration is programming that manages the
interconnection and interactions among cloud-based
applications. To orchestrate cloud applications is to arrange
them so they achieve a desired result. A comparative study on
existing approached to cloud service orchestration is presented
in [3]. In [4], the authors present layer architecture for cloud
service orchestration. A decentralized approach to the
orchestration of cloud services using multi-agent system is
proposed in [5]. In [6], the authors present an autonomic
framework for cloud computing orchestration based on virtual
machines migrations and heuristics to select hosts to be
activated or deactivated when needed. The survey on research
related to cloud orchestration shows that works deal with high
level architectural aspects and do not provide more details on
detecting and resolving of interactions among applications.

In this paper we propose an approach to cloud

application orchestration. The approach allows detection and
resolution of interactions among cloud applications. It is
illustrated for applications which add functionality to basic
bearer selection procedure for IoT devices.

The paper is structured as follows. In Section II, a
semantic data related to IoT connectivity management is
presented. Section III describes cloud applications which
manage device connectivity based on different policies.
Possible service interactions and their resolution are discussed
in Section IV. The conclusion discusses implementation
aspects of the proposed method for service orchestration and
highlights its benefits.

II. DEVICE CONNECTIVITY MANAGEMENT

ONTOLOGY

Our research is based on Open Mobile Alliance (OMA) trap
mechanism which may be employed by an application to
enable the device to capture and report events and other
relevant information generated from various components of
the device, such as a protocol stack, device drivers, or
applications [7]. OMA traps that may be used for connectivity
management are geographic trap, received power trap, call
drop trap, quality of service (QoS) trap, and data speed trap
[8].

In order to send information over the network, any IoT
device needs connectivity. A connected device uses a network
bearer and can measure its signal strength. A possible sequence
of procedures performed by the server running cloud
application for connectivity management and wireless device
in the context of connectivity management is as follows. The
server establishes an observation relationship with the device
to acquire periodical or triggered notifications about signal
strength of the used bearer. The device sends periodical or
triggered notifications about signal strength. Upon dropping of
signal strength under application defined threshold, the server
queries about used and available network bearers. In case the
device senses available unused bearers, the cloud application
may initiate bearer selection. Different cloud applications may
use different policies for the bearer selection. For example, a
cloud application may apply location based policy for bearer
selection, while another cloud application may initiate bearer
selection procedure whenever an uplink or downlink average
data speed reaches an application defined lower or higher
threshold value. Fig. 1 shows the ontology related to
connectivity management of IoT devices.

In the figure, a bearer change is required for the device
when it experiences bad signal whose signal strength is under
application defined value. In addition to basic concepts and
properties related to basic connectivity management, the
figure show concepts and properties related to location based
and data speed-based bearer selection. A cloud application
may define geographic area in which a preferred bearer has to

1The authors are with the Faculty of Telecommunications at
Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,
Bulgaria, E-mail: {enp, iia}@tu-sofia.bg

2R. Dimova is with the Faculty of Computing and Automatics at
Technical University of Varna, Studentska str, Varna, Bulgaria, E-
mail: rdom@abv.bg

158

be used. Another cloud application may define thresholds
indicating low and high uplink and downlink speeds, and
when the data speeds are below/above low/high thresholds the
application considers the speed as unacceptable.

Fig. 1. Ontology for connectivity management of IoT devices

The proposed ontology may be described by OWL. For

sake of brevity we describe the ontology by description logic.
The following concepts express the device state and facts

related to the device connectivity:
 disconnected – the device is disconnected;
 connectedb – the device is connected by bearer b;
 weakSignalb– the device is connected by bearer b, but

the signal strength of b is low;
 availableb – the bearer b is available.
 Roles represent actions or notifications about events

related to device connectivity management.
 connects – device connects to the network;
 disconnects – the device disconnects from the network;
 change – the device changes the used bearer;
 signalDrops – the signal of the used bearer drops;
 getParameters - the server queries the device about

connectivity parameters;
 parameters - the device provides the requested

connectivity parameters;
 changeBearer - the server instructs the device to change

the used bearer.
Concepts and roles are used to specify the connectivity

management model (CMM). The Terminology box (TBox)
consists of expressions that represent how the device can
change its state.

 disconnected⊑connects.connectedb (1)

 connectedb⊑getParameters.connectedb (2)

 connectedb⊑parameters.connectedb⊓availablec (3)

 connectedb⊑parameters.connectedb⊓availablec (4)

 connectedb⊑(signalDrops⊓getParameters).weakSignalb (5)

 weakSignalb⊑parameters.(weakSignalb⊓availablec) (6)

 weakSignalb⊓availablec⊑changeBearer.connectedc (7)

 weakSignalb⊑parameters.(weakSignalb⊓availablec) (8)

 weakSignalb⊓availablec⊑disconnects.disconnected (9)

 connectedb⊑disconnects.disconnected (10)

 weakSignalb⊑disconnects.disconnected (11)
The Assertion box (ABox) contains one statement

presenting the initial state for each device: s0:⊓dDevices

disconnected.
To express the fact that each device is in exactly one state

at any moment the following statement is used:

⊤⊑(⊔d1,d2CMM, d1d2(s1⊓s2))⊓(⊔dCMM s)
The device state changes by means of actions defined as

action functions. An action function FuncCMM for given state
corresponds to the possible transitions in the CMM. For
example, the expression FuncCMS(connectedb)= signalDrop}
{disconnect} means that, if the device is connected, the
received power of the used bearer may drop, the device may
disconnect or deregister.

The fact that each device can change the CMM state only
by means of certain actions is represented by the following

statement: for all sCMM, and all RFuncCMM (s), s⊑R.s.

III. ADDING FUNCTIONALITY TO DEVICE

CONNECTIVITY

A. Location-Based Bearer Selection

The Location-based Bearer Selection (LBS) application
assumes that there is a predefined geographic area in which a
preferred bearer is used. The state diagram of service logic for
location based bearer selection is shown in Fig.2.

Additional concepts representing facts and roles are
defined:
 inArea – the device is located in the specified area;
 outOfArea – the device is located out of the specified

area;
 preferredb – the bearer b is the preferred one in the

specified area;
 enters – the device enters the specified area;
 exits – the device exits the specified area;
 location – the device sends its location;
 getLocation – the server queries about device’s location.
The following trivial axiomis true: outOfArea≡inArea.
The refinement of the knowledge base for LBS application

is defined by the following statements.
When the device is connected, the application queries about

device location:

Device

Bearer

uses senses

Connected
Device

Disconnected
Device

Preferred
Bearer

defines

supports

isA

Acceptable
Speed

Unacceptable
Speed

is

is

Available
Bearer

UsedBearer

is is

SignalStrength

has

HighSignal

is

is

Connected
Weak Signal

is

LowSignal

experiences

DataSpeed

is Provided
Speed

provides

connects

disconnects

signalDrops

signalRises

is

may be

decreases increases

OutOfArea

InArea
may be

enters

exits

isA

159

 LBS⊓connectedb⊑getLocation. connectedb (12)
The device responds and the application can determine its

location with respect of the predefined geographic area:

Fig. 2. State diagram of service logic for location-based bearer
selection

 LBS⊓connectedb⊑location.(connectedb⊓inArea) (13)

 LBS⊓connectedb⊑location.(connectedb⊓outOfArea) (14)
Based on the device response of the query about

connectivity parameters, the application may determine
whether the device uses the preferred bearer, or the preferred
bearer is among the available ones in case the device is in the
area:

 LBS⊓connectedb⊓inArea⊑
 parameters.(connectedb⊓inArea⊓preferredb) (15)

 LBS⊓connectedb⊓inArea⊑
parameters.(connectedb⊓inArea⊓preferredc⊓availablec)(16)

If the device is in the area and the preferred bearer is not
used but available, the application initiates bearer change:

 LBS⊓connectedb⊓inArea⊓preferredc⊓availablec⊑
 changeBearer.(connectedc⊓inArea⊓preferredc) (17)

The device may enter or exit the area:

 LBS⊓connectedb⊓inArea⊑
 exits.(connectedb⊓outOfArea) (18)

 LBS⊓connectedb⊓outOfArea⊑
 enters.(connectedb⊓inArea) (19)

The application logic is summarized by:

 LBS⊑ (connectedb⊓inArea⊓preferredc⊓availablec) (20)

B. Data Speed-Based Bearer Selection

Data speed bearer selection (DBS) application uses the data
speed trap. The application configures different data speed
traps for uplink and downlink. Low speed data traps become
active when the average data speed calculated for the given
period reaches below the server defined lower threshold value.
High speed data traps become active when the average data
speed calculated for the given period reaches above this
higher threshold value. The application initiates bearer
selection whenever the data speed trap goes to active. The
knowledge base for this service is extended with new concepts
representing unacceptable for the application data speeds and
bearer with appropriate data speed, a new role for trap activity
and statements for bearer selection logic:
 speedUnacceptableb – the data speed is beyond the

application defined thresholds;
 dsTrapFires – any of the data speed traps goes active;
 appropriateb – the data speed supported by bearer b are

acceptable for the application.
The refinement for DBS service is defined by the following

statements.
Being connected to bearer b, the device may experience

unacceptable for the application data speeds:

 DBS⊓connectedb⊑dsTrapFires.(connectedb⊓
 speedUnacceptableb) (21)

If the data speeds are unacceptable, the application queries
the device about its connectivity parameters:

 DBS⊓connectedb⊓speedUnacceptableb⊑
 getParameters.(connectedb⊓speedUnacceptableb) (22)

Based on the device response, the application may
determine that there is an available bearer which supports
acceptable data speeds and the application initiates bearer
change:

 DBS⊓connectedb⊓speedUnacceptableb⊑
 parameters.(connectedb⊓speedUnacceptableb

 ⊓availablec⊓appropriatec) (23)

 DBS⊓connectedb⊓speedUnacceptableb⊓availablec

 ⊓appropriatec⊑changeBearer.connectedc (24)
Based on the device response, the application may

determine that there is no available bearer which supports
acceptable data speeds and the application initiates device
disconnect:

 DBS⊓connectedb⊓speedUnacceptableb⊑
 parameters.(connectedb⊓speedUnacceptableb

 ⊓availablec⊓appropriatec) (25)

 DBS⊓connectedb⊓speedUnacceptableb⊓availablec

 ⊓appropriatec⊑disconnects.disconnected (26)
The following statement summarizes the application logic:

 DBS⊑(connectedb⊓speedUnacceptableb⊓
 availablec⊓appropriatec). (27)

connected

connected⊓
inArea

signalDop/
getParameters

weak signal

parameters

no

disconnect
connected⊓

inArea⊓preferre

connected⊓
outOfArea

connects

signalDrop/
getParameters

connected

Is the
device in
the area?

Is the used
bearer the

preferred one?

noIs the
preferred

bearer
available

yes

yes/
changeBearer

no

enters/
getParameters

*(disconnected)

disconnected

disconnected

location/getParameters

parameters

yes

exits

yes /
changeBearer,

getLocation

disconnected

no /
disconnect

Is there an
available
bearer?

signalDrop/
getParameters

enters,
exits

connected⊓
outArea

exits

getLocation

160

IV. REASONING ON SERVICE INTERACTION

By the use of OMA Diagnostic and monitoring traps
different policies may be used for connectivity management.
Further, the bearer selection may depend on available
subscriber balance. Real-time information about device
provider’s balance may be acquired by means of Policy and
Charging Control (PCC) functionality. The PCC concept is
designed to enable flow based charging including online
credit control and policy control which supports service
authorization and quality of service management [9].

When introducing new application, it is important to find
out whether the new application is contradictory to existing
concepts i.e. whether it satisfies or not the statements in the
TBox representing the connectivity management model.

Interaction between LBS and DBS occurs when the device
is in the specified area and uses the preferred bearer as to
LBS, and the data speeds are unacceptable and the DBS
requires a change to a bearer which is available one and
supports acceptable data speeds. We formally prove our
claim.

Proposition 1: Undesired service interaction occurs on

activation of LBS⊓DBS.
Proof: Applying standard reasoning to the knowledge base

we derive the following sequence of device’s state and
transitions:
As to (1) s0 connect s1: connectedb.
As to (12) s1 getLocation s1.
As to (13) s1 location s2: connectedb⊓inArea.
As to (2) to s2 getParameters s2.

As to (3) s2 parameters s3: connectedb⊓inArea⊓preferredb.
As to (21) s3 dsTrapFire s4: connectedb⊓inArea⊓preferredb⊓
speedUnacceptableb.
As to (2) s4 getParameters s4.
As to (3) s4 parameters s5:connectedb⊓inArea⊓preferredb⊓
speedUnacceptableb ⊓acceptablec⊓availablec.

As to s5 changeBearerc s6: connectedc⊓inArea⊓preferredb.
As to (2) s6 getParameters s6.
As to (24) s6 parameters s7: connectedc⊓inArea⊓preferredb⊓
availableb which contradicts to (20) as to LBS, namely

(connectedb⊓inArea⊓preferredc⊓availablec)■.
The result shows that when applying both applications to

the same device, statements representing the LBS and DBS do
not satisfy the statements in the knowledge base i.e. both
applications contradict to each other.

Once detected, service interactions may be resolved by
setting priorities. The cloud functionality for service
orchestration determines the required behavior in case of
service interaction based on application priority. Application
with higher priority can override the instructions of
application with lower priority.

Let us denote the priority of i service by Pi. Then

LBS⊓CBS⊓PLBS<PCBS⊓connectedb⊓inArea⊓preferredb⊓
speedUnacceptableb⊓acceptablec⊓availablec⊑
changeBearer.connectedb⊓inArea⊓preferredc⊓

 availablec⊓speedUnacceptablec (28)

V. CONCLUSION

In this paper we propose an approach to cloud service
orchestration. The approach is illustrated for applications
which add value to IoT device connectivity management.
Each cloud application applies specific policy for the network
bearer that has to be used by the device. The approach is
based on ontology for device connectivity. The ontology and
the application logic may be described by Ontology Web
Language (OWL). The service interaction is considered as
satisfiability problem and undesired application behavior may
be discovered by applying standard reasoning algorithm.
There exist a number of ontology editors and frameworks for
constructing domain models and knowledge-based
applications with ontologies and reasoners to infer logical
consequences from a knowledge base.

The proposed method for resolving service interaction
using priorities allows dynamic service orchestration.

ACKNOWLEDGEMENT

The research is conducted under the grant of project
ДH07/10-2016, funded by National Science Fund, Ministry of
Education and Science, Bulgaria.

REFERENCES

[1] J. Zhou, Z. Cao, X. Dong and X. Lin, "Security and privacy in
cloud-assisted wireless wearable communications: Challenges,
solutions, and future directions," in IEEE Wireless
Communications, vol. 22, no. 2, pp. 136-144, 2015.

[2] J. Huang et al., "Modeling and Analysis on Access Control for
Device-to-Device Communications in Cellular Network: A
Network-Calculus-Based Approach," in IEEE Transactions on
Vehicular Technology, vol. 65, no. 3, pp. 1615-1626, 2016.

[3] K. Bousselmi, Z. Brahmi and M. M. Gammoudi, "Cloud Services
Orchestration: A Comparative Study of Existing
Approaches," 2014 28th International Conference on Advanced
Information Networking and Applications Workshops, Victoria,
BC, 2014, pp. 410-416.

[4] P. Jain, A. Datt, A. Goel and S.C. Gupta, "Cloud service
orchestration based architecture of OpenStack Nova and
Swift," 2016 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), Jaipur,
2016, pp. 2453-2459.

[5] Z. Brahmi and J. Ben Ali, "Cooperative agents-based
decentralized framework for cloud services orchestration," 2015
6th International Conference on Information Systems and
Economic Intelligence (SIIE), Hammamet, 2015, pp. 46-51.

[6] R. Weingärtner, G.B. Bräscher and C.B. Westphall, "A
Distributed Autonomic Management Framework for Cloud
Computing Orchestration," 2016 IEEE World Congress on
Services (SERVICES), San Francisco, CA, 2016, pp. 9-17.

[7] Open Mobile Alliance, Diagnostics and Monitoring Management
Object. OMA-TS-DiagMonTrapMO-V1_0-20090414-C, 2009

[8] Open Mobile Alliance, Diagnostics and Monitoring Trap Events
Specifications,”OMA-TS-DiagMonTrapEvents-V1_2-20131008-
A, 2013

[9] 3GPP Technical Specification Group Services and System
Aspects; Policy and charging control architecture, Release 13,
v13.7.0, 2016.

