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Symmetry in Quasi-Static Analysis of Transmission Lines 
by Using Strong FEM Formulation  

Žaklina Mančić1 and Vladimir Petrović2

Abstract – In the quasi-static analysis of transmission lines, 
symmetry should be taken into account whenever possible, in 
order to reduce the number of unknowns and thus the 
calculation time. In this paper, it is described how to include the 
symmetry in the calculation of quasi-static lines by using the 
strong FEM formulation.   
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I.  INTRODUCTION 

In recent years, the authors are paying more attention to the 
strong FEM formulation for analysis of electrostatic problems 
(Galerkin variant, [1]). While weak FEM formulation is 
widespread in the literature [2,3] strong FEM formulation can 
rarely be found and to the authors’ best knowledge, no one is 
researching its application to electromagnetic problems in the 
way that will be here briefly exposed, except the authors.  

Unlike weak FEM formulation, whose basis functions have 

just 0C  continuity, strong formulation exploits basis 
functions that have continuity of both function and its first 

derivative on the element boundaries ( 1C  continuity). In 
electrostatics, this fact allows satisfaction of the boundary 
condition for continuity of the potential V on the boundaries 
between elements as well as continuity of the normal 
component of the vector electric displacement field ( nD ) on 

the boundary between elements. By using the properties of the 
strong basis functions in the analysis of the symmetric 
structures, symmetry can be simply taken into account.  

In this paper, it will be shown how to solve problems which 
include symmetry using strong FEM formulation considering 
examples of square coaxial line, shielded symmetric stripline 
and shielded microstrip with conducting strip of the zero 
thickness on the isotropic substrate. The observed examples 
can be solved with high accuracy. It will be shown that by 
taking symmetry into account, the required number of 
unknowns is significantly reduced while maintaining 
accuracy, as it could be expected. Also, we will show that in 
some cases it is necessary to discard some basis functions on 
certain finite elements in order to satisfy both boundary 
conditions.  

FEM prodecure applied here is described in details in [4-8]. 
According to the FEM procedure, closed 2D domain is 

divided into subdomains, finite elements of rectangular shape. 
Unknown potential functions of finite elements are 
approximated as the sum of basis functions with unknown 
coefficients. These basis functions are polynomials which 
satisfy both boundary conditions for potential continuity V   

( 0C  continuity) and vector nD ( 1C  continuity). Potential V  

is approximated as: 
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In this expression ja  are unknown coefficients and jf  are 

basis functions. 2D closed domain is considered, bounded by 
contours 1C  (where is 0V=V ) and 2C  (where is 

0nn D=D , 

snnn ρ=DD=D 02010  and 0=ρs ). The final system of 

equations for analysis of 2D problems is [7]:   
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In Galerkin variant is ii f=w . This system of equations is 

valid for both strong and weak formulation and ε  is relative 
permittivity. C is the constant. 

In the case when applied basis functions automatically 
(and exactly) satisfy Dirichlet’s condition (for known 
potential), in the previous equation 0=C  should be set for 
finite elements which have boundary on the conductor. In 
these elements, the set of basis functions are limited to those 
which are equal to zero on the conductor surface. Next, 
additional basis functions which give a constant potential on 
the conductor surface are added to this set. In the case of 
node-based functions, these additional basis functions are 
node-based functions for nodes which are on the conductor. In 
the case of non node-based basis functions (as in this work), 
these additional functions are doublets and quadruplets [4] 
(Figs. 1 and 2). Then, the constant non-zero potential on 
conductor boundaries is provided by parts of quadruplets and 
doublets. The corresponding coefficients ja  of these 

functions are known in advance and in the system of 
equations all terms of that type are moved to the right-hand 
side. Now, when the Dirichlet’s boundary condition are 
automatically satisfied, the system of equations is finally: 
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The Neumann boundary condition (known nD ) is applied in 

symmetrical cases, when the field is tangential to the 
symmetry line. In this case n 0D  .  

II. STRONG BASIS FUNCTIONS AND SYMMETRY 

In the case of analyzed 2D problems, strong basis functions 
are formed as a product of one-dimensional strong basis 
functions which are proposed in [9]. 

Two-dimensional strong basis functions consist of 
quadruplets (Fig. 1), doublets (Fig. 2) and singlets (Fig. 3). 
There are four types of quadruplets; quadruplets shown in Fig. 
1a  provide continuity of the potential V on the boundaries 
between finite elements, whereas quadruplets shown in Fig. 
1b and Fig. 1c provide continuity of nxD  and nyD , 

respectively, while quadruplet shown in Fig. 1d provides 
continuity of both nxD  and nyD . Quadruplets have four parts.  

  

           

           
Fig. 1. Quadruplets for the strong FEM formulation in homogeneous 
media. They provide continuity (a) of V , (b) of nxD , (c) nyD , and 

(d) both nxD  and nyD  

    
 

Fig. 2. Doublets for the strong FEM formulation 

 
Fig. 3. Typical singlet for the strong FEM formulation 

 
The first quadruplet in Fig. 1 can be considered as node-

based basis function. This quadruplet and its parts are used for 
the implementation (satisfaction) of Dirihlet’s boundary 
condition. The remaining quadruplets in Fig. 2 and their parts 
are used for satisfying Neumann boundary condition. They 
give rise to nD  component between the four quadruplet 

elements. Where, due to symmetry, is 0nD   at boundaries 

between the four elements, 1. quadruplet in Fig. 1d and 2. 
either quadruplet in Fig. 1b or the one in Fig. 1c, depending 
on the orientation of the symmetry line, are excluded from the 
set of basis function, as they give rise to nD . In this way, the 

symmetry is involved in the system of equations. When the 
symmetry is taken into account, doublets are excluded from 
Fig. 2b for the same reason as for quadruplets. Singlets are not 
excluded from the set because 0nD   is always valid on the 

boundaries for them.  

A. Examples 

We analyze examples of square coaxial line with air 
dielectric, 1=εr  (Fig. 4), shielded stripline with air dielectric 

and zero strip thickness (Fig. 5), and shielded microstrip line 
with zero metal thickness (Fig. 6).  

In the first example (Fig. 4) symmetry lines are denoted as 
contour 2 in Fig. 4b. On this contour, the field is tangential 
and the Neumann boundary condition 0nD   is satisfied. On 

the contour 1 (on the conductor) the Dirichlet’s boundary 
condition is satisfied. 

 

 
(a) 

 

 
 

(b) 
 Fig. 4. (a) Square coaxial cable with air ( 1=εr ) 

and (b) quarter structure 
 

For square coaxial line considered without symmetry, 
3/ =ba , for the number of finite elements 288=n , required 

number of unknowns in the matrice of the system is 
1152=N  (Fig. 4a). When the symmetry is taken into 

account, Fig. 4b, it is enough to consider just a quarter of the 
structure, thus the number of elements is 72=n  (=288/4) 
whereas the number of unknowns 288=N . In cases without 
symetry it is obtained characteristic impedance 

Ω=Zc 60.375 , for , 3=n=n yx  for the aforementioned 

number of finite elements and Ω=Zc 60.505 , for 
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4=n=n yx  . In the case when symetry is taken into account, 

it is obtained Ω=Zc 60.344 , for 3=n=n yx  and 

Ω=Zc 60.468  for 4=n=n yx , for the aforementioned 

number of finite elements (agreement of these results with 
benchmark solutions is already shown in [4], for 3/ =ab , 
benchmark solution is Ω=Zc 60.6109 . In this case some 

basis functions on particular finite elements have to be 
discarded, in order to satisfy adequately boundary conditions 
(parts of quadruplets or doublets over finite elements denoted 
using gray color, Fig. 4b). This example has already been 
discussed in [4], but it is not explained how symmetry should 
be introduced. The emphasis of the paper [4] is placed on 
discussion about the convergence of the results for the 
characteristic impedance depending on the both number of 
finite elements and the order of the basis function. In previous 
work [5-8], the comparison of the results obtained for this as 
well as other similar geometries with the results obtained 
using different numerical methods is performed, while 
advantages and disadvantages of the proposed method are 
highlighted, too. However, the purpose of this paper is to 
discuss how the symmetry should be implemented to satisfy 
both boundary conditions. The number of finite elements 
(mesh density) and the order of basis function are the result of 
previous research of the authors, obtained by comparing the 
obtained results with the other methods. The same is valid for 
the following examples, as the structures we analyze have 
well-known solutions of the high accuracy.  

In the second example (Fig. 5, 5/ =wa , 4/ =wb ) it is also 
enough to analyze just the quarter of the structure too. Inside 
the structure is air, 1.=εr   

 
(a) 

 
(b) 

 
(c) 

Fig. 5. (a) Shielded stripline with zero-thickness of the conducting 
strip, and (b) and (c) quarter structure 

For observed geometry, software package FEMM [3] gives 
ΩZ c 94.2789=  (for 20 nodes and 26 triangular finite 

elements). Some basis functions on particular finite elements 
have to be discarded, in order to satisfy adequately boundary 
conditions, too. Such are, for example, parts of quadruplets or 
doublets over finite elements denoted using gray color in 
Fig. 5c, which have parts on two contours, so they should 
satisfy at the same time Dirichlet’s condition on the one edge 
and Neumann’s boundary condition on the other one. If it is 
not possible at the same time, they should be discarded from 
the set. For such configuration without symmetry for 

1536=N  unknowns and 384=n  mesh elements, 
Ω=Zc 95.91  is obtained for 3=n=n yx  order of basis 

functions. When symmetry is considered for 596=N  of 
unknowns and  96=n  mesh elements, it is obtained 

Ω=Zc 94.92 . For the order of basis function 4=n=n yx , 

when the symmetry is taken into consideration (the number of 
finite elements remains the same and it is 96=n ) the number 
of unknowns is raising to 1621=N  while the characteristic 
impedance is Ω=Zc 95.808 . This small difference can be 

explained by the aforementioned exclusion of some basis 
functions in the solution with symmetry.  

As for the third example, microstrip structures with single-
layered and multi-layered isotropic, biisotropic and 
anisotropic substrate and strip of the finite as well as zero 
thickness are analyzed in [5-8]. Thus, for example, for 
microstrip of zero thickness of the conducting strip on 
istotropic substrate, ( 5/ =ba , 4/ =wb ), Fig. 6a, it is enough 
to analyze one half of the structure (Fig. 6b).  

 

 

(a) 

 

(b) 
Fig. 6. (a) Shielded microstrip, 4/5,/ =wb=wa , 

  and (b) half structure 
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Software package FEMM [3] gives  5442.41cZ  for 20 

nodes and 26 triangular finite elements. For 216=n  mesh 
elements and 864=N  unknowns, without symmetry, for the 
substrate of 9.3=εr  it is obtained Ω=Zc 41.7298 . When the 

symmetry is taken into consideration and just the half of the 
configuration is observed, i.e. 108=n  finite elements, it is 
obtained Ω=Zc 41.7615 . If we consider this configuration 

with the air medium, 1=εr , for 216=n  mesh elements it is 

obtained Ω=Z c 95.386
0

 while if the symmetry is taken into 

consideration as in Fig. 7, i.e. if it is considered the half of 
geometry, 108=n  mesh elements and 429=N  unknowns, it 
is obtained 

0
95.9188cZ = Ω . Those small differences 

between results obtained with and without symmetry can also 
be explained by the exclusion of some of basis functions in 
the symmetry case. In the observed case in Fig. 5a, Fig. 5b 
and Fig. 6 the order of basis function is 3=n=n yx  and there 

are 216=n  mesh elements. Besides the case of Fig. 5a where 
it was demonstrated that quarter of the structure is enough to 
take symmetry into consideration in the case of homogeneous 
dielectric (air in the observed case), the structure in Fig. 7 
demonstrates how to take symmetry into consideration by 
observing the half of the structure for the same example as in 
the Fig. 5a. 

 

 

Fig. 7. Half of structure which represents  
shielded stripline with air 

III. CONCLUSION 

As FEM has sparse matrix, it is convenient to take 
symmetry into account whenever it is possible as the size of 
the system matrix can be reduced and thus the computing 
time. 

In this paper, it is explained how the symmetry is applied 
for the strong form of FEM. Because of the special (strong) 

basis functions, that automatically satisfy 1C  continuity, the  

use of symmetry leads to exclusion of some basis function on 
the edges of the reduced calculation domain. Application of 
this method is shown in three characteristic examples. 
Because of the exclusion of some basis functions, small 
differences in results with and without symmetry was 
observed. It is shown on the few examples that the influence 
of symmetry does not significantly affect the accuracy of the 
results but it increases the computation speed and it 
significantly decreases the number of unknowns. 
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