

269

Communication Protocols for IoT Devices
Neven Nikolov

Abstract – In this paper is described communication protocols
for IoT devices (Embedded Systems) and difference between
them. Here is described the main features of each of them. Here
is shown their benefits and disadvantages. In this topic is shown
features like security, power consumption, usage and more.

Keywords – Embedded Systems, IoT, Protocol, Cloud

I. INTRODUCTION

There are exists so many standards and protocols for IoT

devices. IoT is used any were, like at in industry, smart
homes, military and every were. IoT can read sensors, control
motors, machines, relays and everything. IoT devices must
communicate between them, and IoT devices must send and
collect data to the IoT Server/Cloud. There are exist various
IoT protocols. Some of them and most used are described on
this article.

II. IOT PROTOCOLS

Higher-level protocols for the Internet of Things (IoT) offer
various features that make them suitable for a broad range of
applications. IoT protocols have various features and offer
different capabilities. Most of these protocols were developed
by specific vendors, and these vendors typically promote their
own protocol choices.

1. MQTT. This is Message Queuing Telemetry Transport.
MQTT is a publish/subscribe messaging protocol designed for
lightweight M2M communications Fig. 1. It was originally
developed by IBM and is now an open standard. Architecture
of MQTT has a client/server model, where every sensor is a
client and connects to a server. The server is known as a
broker over TCP. MQTT is message oriented, and every
message is a discrete chunk of data. Every message is
published to an address. That is known as a topic.

Architecture of MQTT has a client/server model, where
every sensor is a client and connects to a server. The server is
known as a broker over TCP. MQTT is message oriented, and
every message is a discrete chunk of data. Every message is
published to an address. That is known as a topic.

Clients may subscribe to multiple topics. Every client
subscribed to a topic receives every message published to the
topic. The MQTT protocol overview is shown on Fig. 2.
There is showing Client A, B, C and Broker. For a later time,
Client A publishes a value. The broker forwards the message
to all subscribed clients.

Neven Nikolov is with the Faculty of Computer Systems and

Technologies at Technical University of Sofia, 8 Kl. Ohridski Blvd,
Sofia 1000, Bulgaria, E-mail: n.nikolov@tu-sofia.bg

Fig. 1. MQTT Publish/ subscribe messaging protocol

The publisher subscriber model allows MQTT clients to

communicate one-to-one, one-to-many and many-to-one. In
MQTT topics are hierarchical, like a filing system. Wildcards
are allowed when registering a subscription allowing whole
hierarchies to be observed by clients.

MQTT supports three quality of service levels. There was
“Fire and forget”, “delivered at least once” and “delivered
exactly once”. MQTT clients can register a custom “last will
and testament” message to be sent by the broker if they
disconnect.

Fig. 2. The publisher subscriber model

These messages can be used to signal to subscribers when a

device disconnects. MQTT has support for persistent
messages stored on the broker. When publishing messages,
clients may request that the broker persists the message. Only
the most recent persistent message is stored. When a client
subscribes to a topic, any persisted message will be sent to the

270

client. Unlike a message queue, MQTT brokers do not allow
persisted messages to back up inside the server.

For security MQTT brokers may require username and
password authentication from clients to connect. To ensure
privacy, the TCP connection may be encrypted with
SSL/TLS.

2. CoAP. This is Constrained Application Protocol. Like
HTTP, CoAP is a document transfer protocol Fig. 3. Unlike
HTTP, CoAP is designed for the needs of constrained devices.

Fig. 3. CoAP (Constrained Application Protocol)

CoAP packets are much smaller than HTTP TCP flows.

Bitfields and mappings from strings to integers are used
extensively to save space. Packets are simple to generate and
can be parsed in place without consuming extra RAM in
constrained devices. CoAP runs over UDP, not TCP. Clients
and servers communicate through connectionless datagrams.
Retries and reordering are implemented in the application
stack. Removing the need for TCP may allow full IP
networking in small microcontrollers. CoAP allows UDP
broadcast and multicast to be used for addressing. CoAP
follows a client/server model. Clients make requests to
servers, servers send back responses. Clients may GET, PUT,
POST and DELETE resources. CoAP is designed to
interoperate with HTTP and the RESTful web at large through
simple proxies Fig. 4.

Fig. 4. CoAP and RESTful

For security CoAP is built on top of UDP not TCP,
SSL/TLS are not available to provide security. DTLS,
Datagram Transport Layer Security provides the same
assurances as TLS but for transfers of data over UDP.
Typically, DTLS capable CoAP devices will support RSA
and AES or ECC and AES.

3. XMPP. This is Extensible Messaging and Presence
Protocol for message-oriented middleware based on XML
(Extensible Markup Language). This is open technology for
real-time communication, which powers a wide range of
applications including instant messaging, presence, multi-
party chat, voice and video calls, collaboration, lightweight
middleware, content syndication, and generalized routing of
XML data Fig. 5.

Fig. 5. XMPP architecture

4. AMQP. This is Advanced Message Queuing
protocol. AMQP is open standard application layer protocol
for message-oriented middleware. The defining features of
AMQP are message orientation, queuing, routing (including
point-to-point and publish-and-subscribe), reliability and
security. Devices connected to the IoT system have to connect
to a kind of centralized hub that allows them to exchange their
data with the other devices and backend services. The device
that can't be properly connected to the rest of the application
ecosystem, is useless from the IoT point of view Fig. 6.

Fig. 6. AMQP

 5. HTTP. This is Hypertext Transfer Protocol. HTTP
and web sockets are common existing standards, which can

271

be used to deliver XML or JavaScript Object Notation
(JSON) in the payload. JSON provides an abstraction layer
for Web developers to create a state full Web application
with a persistent connection to a Web server. HTTP is the
foundation of the client-server model used for the Web. The
more secure method to implement HTTP is to include only a
client in your IoT device, not a server. In other words, it is
safer to build an IoT device that can only initiate
connections, not receive. After all, you do not want to allow
outside access to your local network. HTTP is defined the
GET , POST, PUT, DELETE and more methods.

III. ADVANTAGES AND DISADVANTAGES OF IOT

PROTOCOLS

MQTT, CoAP, XMPP, AMQP and HTTP are useful as
IoT protocols, but they have fundamental differences. There
are used for connection between IoT device to IoT device,
IoT device to Server/Cloud. Each of them is made for
specific purpose and they have advantages and
disadvantages. IoT protocols are compared in Table 1.

TABLE 1

ADVANTAGES AND DISADVANTAGES IOT PROTOCOLS

Protocol Advantages Disadvantages
MQTT

-Good for low battery
consumption.
-Lightweight API requires
minimal processing on a
device
- Message header can be as
small as two bytes. This
makes it very bandwidth
efficient, ideal for spotty
coverage or limited networks
-Supports the major IoT
message patterns:
publish/subscribe and
request/reply
-MQTT-SN supports topic
ID instead of topic name and
UDP, ZigBee, Bluetooth and
other wireless protocol

- No message queue
support (i.e., only the
most recent message is
stored in a message
broker).
- No support for such
header fields as TTL
(time-to-live), reply To
and user properties.
- It has no section for

message properties.

CoAP

- Has the same strengths as
REST except for TCP.
- Very fast device-to-device
communication in UDP.

-Has the same
weaknesses as REST
except for quality of
service levels.
-Offers “confirmable”
and “non-confirmable”
quality of service.
- Supports only
request-reply message
exchange pattern.

XMPP

- XMPP stands for Extensible
Messaging and Presence
Protocol
- uses the XML text format
as its native type, making
person-to-
person communications
natural
- runs over TCP, or perhaps
over

AMQP

- Support for most message
exchange patterns including
publish-subscribe, request-
reply and message queue.
- Support for all classes of
service.
- Support for detailed header
fields such as TTL, replyTo
and user properties
- Enables portable encoding
of messages.
- Supports both TCP and
UDP.

- Power, processing
and memory
requirements for a
device are relatively
high.
- Its required header
fields are rather long.

HTTP

- Does not require a client
library on the device.
- Simplifies the architecture
if device data loss is
acceptable
- Provides “lowest common
denominator” connectivity,
since most devices can use
HTTP POST or GET.

- Its header fields are
relatively long (if
network bandwidth
matters)
- No support for quality
of service levels.
- No support for varied
message patterns.
- The application needs
to handle all reliability.

IoT protocols are focused on the application data transfer

and processing. The protocols have their features
summarized in Table 2. Several key factors related to
infrastructure and deployment are considered separately
below.

TABLE 2

FEATURES OF IOT PROTOCOLS

Protocol Architecture Usage Resources Transport
MQTT Tree IoT 10Ks/RAM TCP

 msging flash
CoAP Tree utility 10Ks/RAM UDP

 field area flash
XMPP Client Server high 10Ks/RAM TCP

 Manditory flash
AMQP

HTTP Client Server Smart 10Ks/RAM TCP

 Energy flash

Protocol Messaging 2G,3G,4G Low Security
 Power

MQTT Pub/Subsrb Excellent Good Medium
CoAP Rqst/Rspnse Excellent Excellent Medium
XMPP Pub/Subsrb Excellent Fair High
AMQP

HTTP Rqst/Rspnse Excellent Fair Low

272

IV. CONCLUSION

The Internet of Things covers a huge range of industries
and use cases that scale from a single constrained device up
to massive cross-platform deployments of embedded
technologies and cloud systems connecting in real-time.
Tying it all together are numerous legacy and emerging
communication protocols that allow devices and servers to
talk to each other in new, more interconnected ways.

REFERENCES

[1] K. Rowe, Internet of Things Requirements and Protocols,
www.embedded-computing.com, February, 21, 2014.

[2] Y. Kwon, Unnderstanding IoT Protocol – Matching your
Requirements to the Right Option, www.solace.com, January
25, 2017.

[3] S. Schneider, Understanding the Protocols Behind the
Internet of Things, www.beta.electronicdesign.com, Oct. 09,
2013.

[4] R.S. Components, 11 Internet of Things (IoT) Protocols You
Need to Know About, www.rs-online.com , April 20, 2015.

[5] T. Jaffey, MQTT and CoAP, IoT Protocols,
www.eclipse.org, February 2014.

[6] IoT Stantards and Protocols, www.postcapes.com.
[7] B. Kang, and H. Choo, An Experimental Study of a Reliable

IoT Gateway, September 13, 2016.
[8] R. Amina, N. Kumara, G. P. Biswasb, R. Iqbalc,V. Changd, A

light Weight Authentication Protocol for IoT- Enabled Devices
in Distributed Cloud Computing Environment, November 18,
2016.

[9] L. Atzori, A. Iera, and G. Morabito, The Internet of Things: A
Survey, December 10, 2009.

[10] R.F. Fernandes (Jr.), and D. Brandao, Proposal of Receiver
Initiated MAC Protocol for WSN in Urban Environment using
IoT, December 16, 2016.

[11] M.W. Woo, J.W. Lee, and K.H. Park, A Reliable IoT System
for Personal Healthcare Devices, April 12, 2017.

[12] P.P. Ray, A Survey of IoT Cloud Platforms, December 2016.

