

283

Schema on Read Modeling Approach Implementation
in Big Data Analytics in Traffic

Slađana Janković1, Snežana Mladenović2, Stefan Zdravković3, Ana Uzelac4

Abstract – The exploding growth of unstructured data and
overhead of ETL (Extract, Transform and Load) for storing data
in RDBMS is the main reason to use schema on read. Schema on
read refers to an innovative data analysis strategy in new data-
handling tools like Hadoop. With schema on read, you just load
your raw, source data into the data store and think about how to
parse and interpret later. In the traffic field it is very important
to provide an effective sharing of information of public
importance. In this research, we apply schema on read modeling
approach in order to provide various traffic authorities and
other stakeholders with the ability to carry out their own specific
Big Data analytics of the source traffic data, without the need to
take the source data. The implementation was realized in a case
study in road traffic, using Hadoop Distributed File System
(HDFS), Apache Hive data warehouse and HiveQL query
language.

Keywords – Big Data Analytics, Data Sharing, HDFS, HiveQL.

I. INTRODUCTION

By analyzing signals obtained from machines and sensors,
server logs and other new data sources, transport
organizations can predict future events and become more
proactive. Sensors and other intelligent devices can capture
traffic data creating a large, ongoing flow of data. Such data
require Big Data management systems for processing and
reporting. As a result of the complexity, diversity and
stochastic nature of transportation problems, the analytical
toolbox required by transportation analyst must be broad. Big
Data differs from other technologies is in terms of
sophistication analysis it applies. Big Data analytics implies
the process of discovering and extracting potentially useful
information hidden in huge amounts of data (e.g. discovers
unknown patterns and correlations). Big Data analytics uses
advanced analytic techniques, such as machine learning,
predictive analytics, data mining, text analytics, natural
language processing and statistical analysis, against very
large, diverse data sets. Data sets can be consisted of different
data types such as structured/unstructured, streaming/batch,

with different sizes (from terabytes to zettabytes). Also, while
traditional analysis is often designed on the conditions that
allow valid statistical inference about the characteristics of a
population based on measurements on a small sample, Big
Data-style analysis is built on the possibility to learn about
systems by observing them in their entirety.

The intelligent transport systems have shown a rapid
development over the last 15 years. This development has
been accompanied with the need to test the systems that exist
in the real world and collect data about their influence. Many
previous and on-going transportation projects are not focused
on the concept of data sharing and reusage data after the
project finishes. The authors in [1] say: “More support
services which sharing the data is needed to promote good
research results.” In this paper we propose schema on read
modeling approach for Big Data analytics in traffic, which
may be a modeling approach in the development of the
information infrastructure for data sharing in the traffic
domain. Schema on read is the revolutionary concept that we
do not have to know what we’re going to do with our data
before we store it. Data of many types, sizes, shapes and
structures can all be thrown into one of the Big Data storage
systems. When we access the data, when we query it, then we
determine the structure we want to use.

In the second section of this paper an overview of data
modeling approaches is given. The third section of the paper
is devoted to the description of our Big Data analytics
modeling approach. We have implemented our approach in a
case study in the traffic domain. In the fourth section of this
paper our case study is presented. Finally, the conclusions we
reached during the implementation of this modeling approach
are given.

II. DATA MODELING APPROACHES OVERVIEW

Relational Database Management Systems (RDBMSs) are
widely used for to maintain data received in daily operations.
Considering the data modeling of operational databases there
are two main models: the Relational and the Entity-
Relationship (ER) model. Systems using operational databases
are designed to handle a high number of transactions that
usually perform changes to the operational data [2]. These
systems are called Online Transaction Processing (OLTP)
systems.

The evolution of relational databases to decision support
databases, referred as Data Warehouses (DWs), occurred with
the need to store both operational and historical data, and to
analyse that data in complex dashboards and reports. DWs are
mainly used for OLAP (Online Analytical Processing)
operations. Data modeling in DW consists of defining fact
tables with several dimension tables, suggesting star or

1Slađana Janković is with the Faculty of Transport and Traffic
Engineering University of Belgrade, Vojvode Stepe 305, Belgrade
11000, Serbia, E-mail: s.jankovic@sf.bg.ac.rs

2Snežana Mladenović is with the Faculty of Transport and Traffic
Engineering University of Belgrade, Vojvode Stepe 305, Belgrade
11000, Serbia, E-mail: snezanam@sf.bg.ac.rs

3Stefan Zdravković is with the Faculty of Transport and Traffic
Engineering University of Belgrade, Vojvode Stepe 305, Belgrade
11000, Serbia, E-mail: s.zdravkovic@sf.bg.ac.rs

4Ana Uzelac is with the Faculty of Transport and Traffic
Engineering University of Belgrade, Vojvode Stepe 305, Belgrade
11000, Serbia, E-mail: ana.uzelac@sf.bg.ac.rs

284

snowflake schema data models [3]. The most common data
model used in DW is the OLAP cube, which offers a set of
operations to analyze the cube model. Since data is
conceptualized as a cube with hierarchical dimensions, its
operations have familiar names when manipulating a cube,
such as slice, dice, drill and pivot.

The volume of data has been exponentially increasing over
the last years, namely due to the simultaneous growth of the
number of sources (e.g. users, systems or sensors) that are
continuously producing data. Therefore, there is a need to
devise new data models and technologies that can handle such
Big Data. NoSQL (Not Only SQL) is one of the most popular
approaches to deal with this problem. NoSQL databases can
be classified in four categories: Key-value stores, (2)
Document-oriented databases, (3) Wide-column stores, and
(4) Graph databases [4].

A Key-value store represents data as a collection of key-
value pairs. Every key consists of a unique alphanumeric
identifier that works like an index, and is used to access a
corresponding value. Values can be simple text strings or
more complex structures like arrays. The Key-value model
can be extended to an ordered model whose keys are stored in
lexicographical order. The fact of being a simple data model
makes Key-value stores ideally suited to retrieve information
in a very fast, available and scalable way.

Document-oriented databases were originally created to
store traditional documents, like a text file or Microsoft Word
document. However, their concept of document goes beyond
that, and a document can be any kind of domain object.
Documents contain encoded data in a standard format like
XML, YAML, JSON or BSON (Binary JSON). Documents
contain semi-structured data represented as name-value pairs,
which can vary according to the row and can nest other
documents. Unlike key-value stores, these systems support
secondary indexes and allow fully searching either by keys or
by values. Document databases are well suited for storing and
managing huge collections of textual documents (e.g. text
files or email messages), as well as semi-structured.
MongoDB and CouchDB are two most popular Document-
oriented database systems.

Wide-column stores (column-oriented databases) represent
and manage data as sections of columns. Each section is
composed of key-value pairs, where the keys are rows and the
values are sets of columns, known as column families. Each
row is identified by a primary key and can have column
families different from the other rows. Each column of
column family consists in a name-value pair. Column families
can even be grouped in super column families. Wide-column
stores are suited for scenarios like: (1) Distributed data
storage; (2) Large-scale and batch-oriented data processing
using the famous MapReduce method for tasks like sorting,
parsing, querying or conversion and; (3) Exploratory and
predictive analytics. Cassandra and Hadoop HBase are two
popular frameworks of such data management systems [5].

Graph databases represent data as a network of nodes
(representing the domain entities) that are connected by edges
(representing the relationships among them) and are
characterized by properties expressed as key-value pairs.
Graph databases are quite useful when the focus is on

exploring the relationships between data, such as traversing
social networks, detecting patterns or infer recommendations.
Neo4j and Allegro Graph are two examples of such systems.

Operational, decision support and Big Data approach to
data management, from data modeling perspective, DBMSs
perspective and data analytics perspective, were observed in
Table I.

TABLE I
APPROACHES AND PERSPECTIVES OF THE SURVEY

 Approach
Perspective

Operational Decision
Support

Big Data

Data Modeling
Perspective

ER, Relational
Models

Star
Schema,
OLAP
Cube
Models

Key-Value,
Document,
Wide-
Column,
Graph

Database
Management
Systems
Perspective

RDBMS DW Big Data-
Based
Systems

Data Analytics
Perspective

OLTP OLAP Batch-
oriented
processing,
Stream-
processing,
OLTP,
Interactive
ad-hoc
queries

III. SCHEMA ON READ MODELING APPROACH

As we can see in Table I, Big Data analytics can be
categorized as follows: (1) Batch-oriented processing; (2)
Stream processing; (3) OLTP and; (4) Interactive ad-hoc
queries and analysis. Batch-oriented processing is a paradigm
where a large volume of data is firstly stored and then
analyzed, opposed to the streaming processing where data is
continuously arriving in a stream, at a real-time, and is
analyzed as soon as possible in order to derive approximate
results [6]. We propose schema on read modeling approach
for Big Data analytics based on batch-oriented processing.

Schema on write has been the standard for many years in
relational databases. Before any data is written in the
database, the structure of that data is strictly defined while
metadata is stored and tracked. The schema – the columns,
rows, tables and relationships are all defined first for the
specific purpose that database will serve. Then the data is
filled into its pre-defined positions. The data must all be
cleansed, transformed and made to fit in that structure before
it can be stored.

The emergence of Big Data technologies poses an
alternative – a schema on read approach. Schema on read is
simple up front: you just write the information to the data
store. Unlike schema on write, which requires you to expend
time and effort before loading the data, schema on read
involves very little delay and you generally store the data at a

285

raw level. In other words, you store what you get from the
source systems, as it comes in from those systems, and define
the schema at the time of data use (Fig. 1).

Schema on read means you can first write your data and

figure out how you want to organize it later. So why do it that
way? As we can see in Table II, the key drivers are flexibility
and reuse of raw/atomic data. Exactly these characteristics
make schema on read approach appropriate in scenarios of
sharing data of public interest. In the next section we present
the implementation of this approach to share information of
public interest in the field of transport, between the various
stakeholders.

TABLE II
SCHEMA ON READ MODELING APPROACH

A
dv

an
ta

ge
s

˗ Gives you massive flexibility over how the data
can be consumed.

˗ Your raw/atomic data can be stored for
reference and consumption years into the future.

˗ The approach promotes experimentation, since
the cost of getting it “wrong” is so low.

˗ Helps to speed the time between data generation
and availability.

˗ Gives you flexibility to store unstructured, semi-
structured, and/or loosely or unorganized data.

D
is

ad
va

nt
ag

es

˗ Since the data is not subjected to ETL (Extract,
Transform, Load) and data cleansing processes,
nor does it pass through any validation, that data
may be riddled with missing or invalid data,
duplicates, etc...

˗ The SQL queries tend to be very complex. They
take time to write, and time to execute.

˗ Can be “expensive” in terms of computing
resources.

˗ The data is not self-documenting (i.e., you
cannot look at a schema to figure out what the
data are).

IV. CASE STUDY

Our implementation of schema on read modeling approach
was realized through a case study of the Big Data analysis of
traffic data. We analyzed traffic data from ten locations on the
state roads and streets in the town of Novi Sad, Serbia, which
the automatic traffic counters generated during the 2015. The
Apache Hadoop platform was chosen to store and process the
data. Our application of schema on read approach is based on
Hadoop Distributed File System (HDFS), Apache Hive™ data
warehouse software, and Hive Query Language (HiveQL or
just HQL).

HDFS represents a distributed Java-based file system
designed to store very large files with streaming data access
patterns that run on clusters of commodity hardware. “Very
large” in this context means files sizing hundreds of
megabytes, gigabytes, or terabytes. HDFS is based on the idea
that the most efficient data processing pattern is a write-once,
read-many-times pattern. Hadoop moves computing processes
to the data on HDFS and not the other way around.
Applications that require low-latency access to data, in the
tens of milliseconds range, will not work well with HDFS.
HDFS is optimized for delivering a high throughput of data,
and this may be at the expense of latency. Some common
storage formats for Hadoop include: plain text storage (e.g.
CSV, TSV, TXT files), sequence files, Avro files, columnar
file formats (e.g. Parquet, RC Files, ORC Files).

The Apache Hive™ data warehouse software facilitates
reading, writing, and managing large data sets residing in
distributed storage using SQL-like query language [7]. Hive
provides an SQL dialect, called HiveQL for querying data
stored in a Hadoop cluster. Hive translates most queries to
MapReduce jobs, thereby exploiting the scalability of
Hadoop, while presenting a familiar SQL abstraction. Hive is
not designed for online transaction processing. It is
commonly used for traditional data warehousing tasks where
relatively static data is analyzed, fast response times are not
required, and when the data is not changing rapidly. When
you write data to a traditional database, the database has total
control over the storage. The database is the “gatekeeper.” An
important implication of this control is that the database can
enforce the schema as data is written. On the contrary, Hive
does not have has any control over the integrity of the files
used for storage and whether or not their contents are
consistent with the table schema. So what if the schema does
not match the file contents? Hive does the best it can to read
the data. You will get lots of null values if there are not
enough fields in each record to match the schema. If some
fields are numbers and Hive encounters nonnumeric strings, it
will return nulls for those fields. Therefore, Hive can only
enforce queries on read. This is called schema on read.

Our solution was implemented through the following
phases:

1. To count the traffic at the specified locations, the
automatic traffic counters of type QLTC-10C were used. Each
counter, during the course of the day, "writes" the data into
one text file, so that during one year each counter generates
365/366 files. For each vehicle registered by a counter, one
record is created in the text file. Record in the text file

Fig. 1. Schema on read modeling approach

286

contains the following information: index, date and time,
direction, lane, vehicle class, vehicle category, vehicle speed
and vehicle length. Size of a text file is determined by the
volume of traffic in one day at the observed counting place. In
our case study, each of the ten counters in 2015 generated 365
files and each text file kept between 4000 and 14000 records.

2. Using the Apache Ambari user interface, on the
Hortonworks Sandbox, text files generated by ten automatic
traffic counters were uploaded into the HDFS.

3. Based on the structure of uploaded text files the data
model for input data was created. According to developed
data model, with the help of HiveQL query language, a Traffic
Counting Hive database was created.

4. Using HiveQL LOAD DATA INPATH queries the Hive
database tables were "filled" with the data from the text files
stored on the HDFS (Fig. 2).

5. We have recognized two possible types of the results of

data analysis: indicators of traffic volume and structure and
indicators of traffic safety in terms of vehicles speed. HiveQL
has the well known powerful technique named Create Table
As Select (CTAS). This type of HiveQL queries enable us to
quickly derive Hive tables from other tables in order to build
powerful schemas for Big Data analysis (Fig. 2). We carried
out numerous CTAS and others HiveQL queries on the
Hadoop Traffic Counting database resulting in traffic volume
indicators and traffic safety indicators.

6. We have created three different “users” of the results of
conducted Big Data analysis of traffic data: Windows geo-
application (developed in Microsoft Visual Studio 2015 and
Visual Basic programming language), Microsoft Excel 2013
workbook and SQL Server 2012 database (Fig. 2). For the
geo-application schema on read approach enabled calculating
of traffic volume indicators, as predefined attributes of the
OpenStreet Maps. For the Excel Workbook this approach
enabled the calculation of traffic safety indicators, as
attributes of the Bing Maps. For the SQL Server database, this
approach enabled the calculation of all traffic indicators
according to its relational data model. Access to the Traffic
Counting Hadoop database for all three users was enabled
with the help of Hortonworks Hive ODBC Driver.

V. CONCLUSION

Schema on read approach can be seen as schema on
demand. One area where we see the advantages far
outweighing the drawbacks of schema on read strategies is in
environments where multiple LOBs (Line of Business) try to
hit the same source systems for their own copy of the data.
The schema on read approach involves having a data “landing
zone” where the raw or atomic data is written out. After
getting the data once, all the LOB systems make their schema
on read requests against the landing zone. This prevents the
source systems from having to deal with all the LOB requests
and provides a one-to-many approach of serving up data.

Similar studies, like Hadoop for exploratory analytics and
Hadoop as a platform for transforming data or ETL, confirm
that there is always a time cost to impose a schema on data.
Hadoop provides an important advantage for exploratory BI in
a single step from data load to query, which is not available in
conventional RDBMS. The data-load-to-query in one step
involves: 1. copy data into HDFS with ETL tool; 2. declare
the query schema in Hive or Impala, which doesn’t require
data copying or re-loading, due to the schema-on-
read advantage of Hadoop compared with schema-on-
write constraint in RDBMS; 3. explore with SQL queries and
launching BI tools for exploratory analytics. In schema on
write strategies time cost is paid in the data loading stage. In
schema on read strategies, that time cost is paid when we
query the data.

ACKNOWLEDGEMENT

This work has been partially supported by the Ministry of
Education, Science and Technological Development of the
Republic of Serbia under No. 036012. The data generated by
automatic traffic counters provided by the company MHM -
Project from Novi Sad.

REFERENCES

[1] H. Gellerman, E. Svanberg and Y. Barnard, "Data sharing of
transport research data", Transportation Research Procedia, vol.
14, pp. 2227 – 2236, 2016.

[2] D. Sarka, M. Radivojevic and W. Durkin, SQL Server 2016
Developer's Guide, Birmingham, Packt Publishing, 2017.

[3] R. Kimball and M. Ross, The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling 3rd Edition,
Indianapolis, John Wiley & Sons, 2013.

[4] A. Ribeiro, A. Silva and A.R. da Silva, "Data Modeling and
Data Analytics: A Survey from a Big Data Perspective", Journal
of Software Engineering and Applications, vol. 8, pp. 617-634,
2015.

[5] A. B.M. Moniruzzaman and S.A. Hossain, "NoSQL Database:
New Era of Databases for Big data Analytics-Classification,
Characteristics and Comparison", International Journal of
Database Theory and Application, vol. 6. no. 4, pp. 1-14, 2013.

[6] H. Hu, Y. Wen, T.S. Chua and X. Li, "Toward Scalable Systems
for Big Data Analytics: A Technology Tutorial", IEEE Access,
vol. 2, pp. 652-687, 2014.

[7] E. Capriolo, D. Wampler and J. Rutherglen, Programming Hive,
Sebastopol, O'Reilly Media, 2012.

Fig. 2. Schema on read modeling approach implementation

