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in Big Data Analytics in Traffic 
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Abstract – The exploding growth of unstructured data and 
overhead of ETL (Extract, Transform and Load) for storing data 
in RDBMS is the main reason to use schema on read. Schema on 
read refers to an innovative data analysis strategy in new data-
handling tools like Hadoop. With schema on read, you just load 
your raw, source data into the data store and think about how to 
parse and interpret later. In the traffic field it is very important 
to provide an effective sharing of information of public 
importance. In this research, we apply schema on read modeling 
approach in order to provide various traffic authorities and 
other stakeholders with the ability to carry out their own specific 
Big Data analytics of the source traffic data, without the need to 
take the source data. The implementation was realized in a case 
study in road traffic, using Hadoop Distributed File System 
(HDFS), Apache Hive data warehouse and HiveQL query 
language.  
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I.  INTRODUCTION 

By analyzing signals obtained from machines and sensors, 
server logs and other new data sources, transport 
organizations can predict future events and become more 
proactive. Sensors and other intelligent devices can capture 
traffic data creating a large, ongoing flow of data. Such data 
require Big Data management systems for processing and 
reporting. As a result of the complexity, diversity and 
stochastic nature of transportation problems, the analytical 
toolbox required by transportation analyst must be broad. Big 
Data differs from other technologies is in terms of 
sophistication analysis it applies. Big Data analytics implies 
the process of discovering and extracting potentially useful 
information hidden in huge amounts of data (e.g. discovers 
unknown patterns and correlations). Big Data analytics uses 
advanced analytic techniques, such as machine learning, 
predictive analytics, data mining, text analytics, natural 
language processing and statistical analysis, against very 
large, diverse data sets. Data sets can be consisted of different 
data types such as structured/unstructured, streaming/batch, 

with different sizes (from terabytes to zettabytes). Also, while 
traditional analysis is often designed on the conditions that 
allow valid statistical inference about the characteristics of a 
population based on measurements on a small sample, Big 
Data-style analysis is built on the possibility to learn about 
systems by observing them in their entirety. 

The intelligent transport systems have shown a rapid 
development over the last 15 years. This development has 
been accompanied with the need to test the systems that exist 
in the real world and collect data about their influence. Many 
previous and on-going transportation projects are not focused 
on the concept of data sharing and reusage data after the 
project finishes. The authors in [1] say: “More support 
services which sharing the data is needed to promote good 
research results.” In this paper we propose schema on read 
modeling approach for Big Data analytics in traffic, which 
may be a modeling approach in the development of the 
information infrastructure for data sharing in the traffic 
domain. Schema on read is the revolutionary concept that we 
do not have to know what we’re going to do with our data 
before we store it. Data of many types, sizes, shapes and 
structures can all be thrown into one of the Big Data storage 
systems. When we access the data, when we query it, then we 
determine the structure we want to use.  

In the second section of this paper an overview of data 
modeling approaches is given. The third section of the paper 
is devoted to the description of our Big Data analytics 
modeling approach. We have implemented our approach in a 
case study in the traffic domain. In the fourth section of this 
paper our case study is presented. Finally, the conclusions we 
reached during the implementation of this modeling approach 
are given. 

II. DATA MODELING APPROACHES OVERVIEW 

Relational Database Management Systems (RDBMSs) are 
widely used for to maintain data received in daily operations. 
Considering the data modeling of operational databases there 
are two main models: the Relational and the Entity-
Relationship (ER) model. Systems using operational databases 
are designed to handle a high number of transactions that 
usually perform changes to the operational data [2]. These 
systems are called Online Transaction Processing (OLTP) 
systems. 

The evolution of relational databases to decision support 
databases, referred as Data Warehouses (DWs), occurred with 
the need to store both operational and historical data, and to 
analyse that data in complex dashboards and reports. DWs are 
mainly used for OLAP (Online Analytical Processing) 
operations. Data modeling in DW consists of defining fact 
tables with several dimension tables, suggesting star or 
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snowflake schema data models [3]. The most common data 
model used in DW is the OLAP cube, which offers a set of 
operations to analyze the cube model. Since data is 
conceptualized as a cube with hierarchical dimensions, its 
operations have familiar names when manipulating a cube, 
such as slice, dice, drill and pivot. 

The volume of data has been exponentially increasing over 
the last years, namely due to the simultaneous growth of the 
number of sources (e.g. users, systems or sensors) that are 
continuously producing data. Therefore, there is a need to 
devise new data models and technologies that can handle such 
Big Data. NoSQL (Not Only SQL) is one of the most popular 
approaches to deal with this problem. NoSQL databases can 
be classified in four categories: Key-value stores, (2) 
Document-oriented databases, (3) Wide-column stores, and 
(4) Graph databases [4]. 

A Key-value store represents data as a collection of key-
value pairs. Every key consists of a unique alphanumeric 
identifier that works like an index, and is used to access a 
corresponding value. Values can be simple text strings or 
more complex structures like arrays. The Key-value model 
can be extended to an ordered model whose keys are stored in 
lexicographical order. The fact of being a simple data model 
makes Key-value stores ideally suited to retrieve information 
in a very fast, available and scalable way. 

Document-oriented databases were originally created to 
store traditional documents, like a text file or Microsoft Word 
document. However, their concept of document goes beyond 
that, and a document can be any kind of domain object. 
Documents contain encoded data in a standard format like 
XML, YAML, JSON or BSON (Binary JSON). Documents 
contain semi-structured data represented as name-value pairs, 
which can vary according to the row and can nest other 
documents. Unlike key-value stores, these systems support 
secondary indexes and allow fully searching either by keys or 
by values. Document databases are well suited for storing and 
managing huge collections of textual documents (e.g. text 
files or email messages), as well as semi-structured. 
MongoDB and CouchDB are two most popular Document-
oriented database systems. 

Wide-column stores (column-oriented databases) represent 
and manage data as sections of columns. Each section is 
composed of key-value pairs, where the keys are rows and the 
values are sets of columns, known as column families. Each 
row is identified by a primary key and can have column 
families different from the other rows. Each column of 
column family consists in a name-value pair. Column families 
can even be grouped in super column families. Wide-column 
stores are suited for scenarios like: (1) Distributed data 
storage; (2) Large-scale and batch-oriented data processing 
using the famous MapReduce method for tasks like sorting, 
parsing, querying or conversion and; (3) Exploratory and 
predictive analytics. Cassandra and Hadoop HBase are two 
popular frameworks of such data management systems [5]. 

Graph databases represent data as a network of nodes 
(representing the domain entities) that are connected by edges 
(representing the relationships among them) and are 
characterized by properties expressed as key-value pairs. 
Graph databases are quite useful when the focus is on 

exploring the relationships between data, such as traversing 
social networks, detecting patterns or infer recommendations. 
Neo4j and Allegro Graph are two examples of such systems. 

Operational, decision support and Big Data approach to 
data management, from data modeling perspective, DBMSs 
perspective and data analytics perspective, were observed in 
Table I. 

TABLE I 
APPROACHES AND PERSPECTIVES OF THE SURVEY 

          Approach 
Perspective 

Operational Decision 
Support 

Big Data 

Data Modeling 
Perspective 

ER, Relational 
Models 

Star 
Schema, 
OLAP 
Cube 
Models 

Key-Value, 
Document, 
Wide-
Column, 
Graph 

Database 
Management 
Systems 
Perspective 

RDBMS DW Big Data-
Based 
Systems 

Data Analytics 
Perspective 

OLTP OLAP Batch-
oriented 
processing, 
Stream-
processing, 
OLTP, 
Interactive 
ad-hoc 
queries 

III. SCHEMA ON READ MODELING APPROACH 

As we can see in Table I, Big Data analytics can be 
categorized as follows: (1) Batch-oriented processing; (2) 
Stream processing; (3) OLTP and; (4) Interactive ad-hoc 
queries and analysis. Batch-oriented processing is a paradigm 
where a large volume of data is firstly stored and then 
analyzed, opposed to the streaming processing where data is 
continuously arriving in a stream, at a real-time, and is 
analyzed as soon as possible in order to derive approximate 
results [6]. We propose schema on read modeling approach 
for Big Data analytics based on batch-oriented processing. 

Schema on write has been the standard for many years in 
relational databases. Before any data is written in the 
database, the structure of that data is strictly defined while 
metadata is stored and tracked. The schema – the columns, 
rows, tables and relationships are all defined first for the 
specific purpose that database will serve. Then the data is 
filled into its pre-defined positions. The data must all be 
cleansed, transformed and made to fit in that structure before 
it can be stored. 

The emergence of Big Data technologies poses an 
alternative – a schema on read approach. Schema on read is 
simple up front: you just write the information to the data 
store. Unlike schema on write, which requires you to expend 
time and effort before loading the data, schema on read 
involves very little delay and you generally store the data at a 
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raw level. In other words, you store what you get from the 
source systems, as it comes in from those systems, and define 
the schema at the time of data use (Fig. 1). 

 
Schema on read means you can first write your data and 

figure out how you want to organize it later. So why do it that 
way? As we can see in Table II, the key drivers are flexibility 
and reuse of raw/atomic data. Exactly these characteristics 
make schema on read approach appropriate in scenarios of 
sharing data of public interest. In the next section we present 
the implementation of this approach to share information of 
public interest in the field of transport, between the various 
stakeholders. 

TABLE II 
SCHEMA ON READ MODELING APPROACH 

A
dv

an
ta

ge
s 

˗ Gives you massive flexibility over how the data 
can be consumed. 

˗ Your raw/atomic data can be stored for 
reference and consumption years into the future. 

˗ The approach promotes experimentation, since 
the cost of getting it “wrong” is so low. 

˗ Helps to speed the time between data generation 
and availability. 

˗ Gives you flexibility to store unstructured, semi-
structured, and/or loosely or unorganized data. 

D
is

ad
va

nt
ag

es
 

˗ Since the data is not subjected to ETL (Extract, 
Transform, Load) and data cleansing processes, 
nor does it pass through any validation, that data 
may be riddled with missing or invalid data, 
duplicates, etc... 

˗ The SQL queries tend to be very complex. They 
take time to write, and time to execute. 

˗ Can be “expensive” in terms of computing 
resources. 

˗ The data is not self-documenting (i.e., you 
cannot look at a schema to figure out what the 
data are). 

 

IV. CASE STUDY 

Our implementation of schema on read modeling approach 
was realized through a case study of the Big Data analysis of 
traffic data. We analyzed traffic data from ten locations on the 
state roads and streets in the town of Novi Sad, Serbia, which 
the automatic traffic counters generated during the 2015. The 
Apache Hadoop platform was chosen to store and process the 
data. Our application of schema on read approach is based on 
Hadoop Distributed File System (HDFS), Apache Hive™ data 
warehouse software, and Hive Query Language (HiveQL or 
just HQL). 

HDFS represents a distributed Java-based file system 
designed to store very large files with streaming data access 
patterns that run on clusters of commodity hardware. “Very 
large” in this context means files sizing hundreds of 
megabytes, gigabytes, or terabytes. HDFS is based on the idea 
that the most efficient data processing pattern is a write-once, 
read-many-times pattern. Hadoop moves computing processes 
to the data on HDFS and not the other way around. 
Applications that require low-latency access to data, in the 
tens of milliseconds range, will not work well with HDFS. 
HDFS is optimized for delivering a high throughput of data, 
and this may be at the expense of latency. Some common 
storage formats for Hadoop include: plain text storage (e.g. 
CSV, TSV, TXT files), sequence files, Avro files, columnar 
file formats (e.g. Parquet, RC Files, ORC Files). 

The Apache Hive™ data warehouse software facilitates 
reading, writing, and managing large data sets residing in 
distributed storage using SQL-like query language [7]. Hive 
provides an SQL dialect, called HiveQL for querying data 
stored in a Hadoop cluster. Hive translates most queries to 
MapReduce jobs, thereby exploiting the scalability of 
Hadoop, while presenting a familiar SQL abstraction. Hive is 
not designed for online transaction processing.  It is 
commonly used for traditional data warehousing tasks where 
relatively static data is analyzed, fast response times are not 
required, and when the data is not changing rapidly. When 
you write data to a traditional database, the database has total 
control over the storage. The database is the “gatekeeper.” An 
important implication of this control is that the database can 
enforce the schema as data is written. On the contrary, Hive 
does not have has any control over the integrity of the files 
used for storage and whether or not their contents are 
consistent with the table schema. So what if the schema does 
not match the file contents? Hive does the best it can to read 
the data. You will get lots of null values if there are not 
enough fields in each record to match the schema. If some 
fields are numbers and Hive encounters nonnumeric strings, it 
will return nulls for those fields. Therefore, Hive can only 
enforce queries on read. This is called schema on read.  

Our solution was implemented through the following 
phases: 

1. To count the traffic at the specified locations, the 
automatic traffic counters of type QLTC-10C were used. Each 
counter, during the course of the day, "writes" the data into 
one text file, so that during one year each counter generates 
365/366 files. For each vehicle registered by a counter, one 
record is created in the text file. Record in the text file 

 

Fig. 1. Schema on read modeling approach 
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contains the following information: index, date and time, 
direction, lane, vehicle class, vehicle category, vehicle speed 
and vehicle length. Size of a text file is determined by the 
volume of traffic in one day at the observed counting place. In 
our case study, each of the ten counters in 2015 generated 365 
files and each text file kept between 4000 and 14000 records. 

2. Using the Apache Ambari user interface, on the 
Hortonworks Sandbox, text files generated by ten automatic 
traffic counters were uploaded into the HDFS. 

3. Based on the structure of uploaded text files the data 
model for input data was created. According to developed 
data model, with the help of HiveQL query language, a Traffic 
Counting Hive database was created. 

4. Using HiveQL LOAD DATA INPATH queries the Hive 
database tables were "filled" with the data from the text files 
stored on the HDFS (Fig. 2). 

 
5. We have recognized two possible types of the results of 

data analysis: indicators of traffic volume and structure and 
indicators of traffic safety in terms of vehicles speed. HiveQL 
has the well known powerful technique named Create Table 
As Select (CTAS). This type of HiveQL queries enable us to 
quickly derive Hive tables from other tables in order to build 
powerful schemas for Big Data analysis (Fig. 2). We carried 
out numerous CTAS and others HiveQL queries on the 
Hadoop Traffic Counting database resulting in traffic volume 
indicators and traffic safety indicators. 

6. We have created three different “users” of the results of 
conducted Big Data analysis of traffic data: Windows geo- 
application (developed in Microsoft Visual Studio 2015 and 
Visual Basic programming language), Microsoft Excel 2013 
workbook and SQL Server 2012 database (Fig. 2). For the 
geo-application schema on read approach enabled calculating 
of traffic volume indicators, as predefined attributes of the 
OpenStreet Maps. For the Excel Workbook this approach 
enabled the calculation of traffic safety indicators, as 
attributes of the Bing Maps. For the SQL Server database, this 
approach enabled the calculation of all traffic indicators 
according to its relational data model. Access to the Traffic 
Counting Hadoop database for all three users was enabled 
with the help of Hortonworks Hive ODBC Driver.  

V. CONCLUSION 

Schema on read approach can be seen as schema on 
demand. One area where we see the advantages far 
outweighing the drawbacks of schema on read strategies is in 
environments where multiple LOBs (Line of Business) try to 
hit the same source systems for their own copy of the data. 
The schema on read approach involves having a data “landing 
zone” where the raw or atomic data is written out. After 
getting the data once, all the LOB systems make their schema 
on read requests against the landing zone. This prevents the 
source systems from having to deal with all the LOB requests 
and provides a one-to-many approach of serving up data. 

Similar studies, like Hadoop for exploratory analytics and 
Hadoop as a platform for transforming data or ETL, confirm 
that there is always a time cost to impose a schema on data. 
Hadoop provides an important advantage for exploratory BI in 
a single step from data load to query, which is not available in 
conventional RDBMS. The data-load-to-query in one step 
involves: 1. copy data into HDFS with ETL tool; 2. declare 
the query schema in Hive or Impala, which doesn’t require 
data copying or re-loading, due to the schema-on-
read advantage of Hadoop compared with schema-on-
write constraint in RDBMS; 3. explore with SQL queries and 
launching BI tools for exploratory analytics. In schema on 
write strategies time cost is paid in the data loading stage. In 
schema on read strategies, that time cost is paid when we 
query the data. 
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