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2. Time of Chopping Current  
 

Current chopping refers to the prospective over voltage 
events which can result with certain types of inductive load 
(power transformer) due to the premature suppression of the 
power frequency current before normal current zero in the 
vacuum interrupter . 

   The term multiple re-ignitions refers to the series of 
alternate re-ignitions and high frequency (typical several 
hundred KHz)interruptions usually resulting in an increasing 
train of voltage peaks; this overall phenomena is usually 
defined as voltage escalation [3]-[4]. 

 If the high frequency accompanying re-ignitions and 
voltage escalation in one phase couple into other two phases, 
the process of virtual current chopping can occur [6]. Virtual 
current chopping involves the load current in the other two 
phases being forced to zero by superimposed high –frequency 
reignition coupled current. It is important to appreciate that 
while current chopping and voltage escalation can occur in a 
single –phase circuit, virtual current chopping is specifically a 
3-phase characteristic : the effects of normal current chopping, 
multiple reignition and over voltage escalation in one phase 
can generate surge over voltages in the second and third 
phases. 
 
3. Time of Prestrike Transient Over-Voltages 

Pre-striking of the breaker in picking up a transformer load 
is somewhat similar to the multiple re-ignition event which 
occurs on opening a breaker [7]. A high frequency current 
governed by the circuit parameters flows. However pre-
striking transient over voltages is less severe than multiple re-
ignitions occurring during load- dropping, first because the 
contact gap at the first prestrike is very small and second 
because the contact gap is rapidly decreasing rather than 
increasing with respect of time. 
 
4. The Restrikes over Voltages 

Restrike overvoltage due to the multiple re-ignition of 
circuit breaker when a switching interrupter process is 
initiated before current zero.  
 
5. Multiple Re-ignitions 

Multiple repeated ignitions means an over voltage 
magnitude is a straightforward concept: as the amplitude of 
any overvoltage increases, the probability of breakdown in 
vacuum, or breakdown of solid insulation increases. 
Consequently, over voltage magnitude must be considered 
Transient voltage rate-of –rise is important because very fast 
rising transients can cause the over voltage to be non-
uniformly distributed the transformer windings. For example, 
a voltage transient with 0.2 µs rise time may result in 80% 
to100% of a voltage surge appearing across the first coil of the 
above each transformer for multi-coil windings, turns of the 
first coilcould be 6 time higher if the transient was slow rising 
for each 0.2 µs impulses. Consequently this magnitude is well 
below of the transformer windings could damage the inter-
trun insulation of the fist coil of the winding.  

An important factor to consider is that, even if the non-
uniform voltage distribution in a winding does not actually 

result in a failure of the inter-turn insulation, respectively , the 
fast-rising transients can gradually degrade insulation to the 
possible point of failure over long period of time - many years 
over age for power transformers. 

The multiple re-ignition phenomena can cause winding 
insulation to be subjected to fast – transients more frequently 
with vacuum switchgear (several times per switching event) 
than with other types of switchgears. It is therefore, important 
t determine those applications where fast transients could be 
cause problems, and to take appropriate measures to control 
the voltage rate-of-rise for this application. 

 
6. Repeated High Frequencies Inside Interrupter  
 
a) The first of these is 50 Hz. 
b) The second frequency is the normal frequency load 
transient recovery voltage, normally in the range from 
(500 Hz to 5 KHz).This normal recovery voltage frequency is 
governed by the effective inductance of the load and 
capacitance from load terminal to ground; this capacitance 
may have three components - terminal bushing to ground 
capacitors, cable capacitors, and a surge capacitors if one is 
provide at the load the sequence time feedback to the circuit 
will in the range of between (100 us – 250 us). 
c) The third frequency is that due to high frequency re-
ignitions. Note that in all systems,irrespective of what type of 
breaker is used, high frequency currents are caused to flow 
whenever the breaker reignites of prestrikes. The value of 
frequency is determined by the effective capacitance at the 
load and the effective inductance of the cable between 
breaker and load When a re-ignition, restrike, or prestrike 
transient over voltages occur in the circuit switching device, 
the collapse of a voltage surge into cable –load system This 
surge is reflected at the load terminal , returns to the source- 
breaker end of the system, and travels back and forth along 
the cable many times until attenuated by losses. The 
frequency of the current is related to the travel/return 
frequency of reflected surges propagated back and forth along 
cable; the frequency is directly proportional to cable length, 
modified by resistive and reflective attenuation losses. Typical 
values of high frequency of high frequency vary in the range 
over 2 MHz for 100 m/length of cable given 0.2 us rise-of-
time, to over 50 KHz for 5000 m/length of cable with almost 
between (12-25 µsec rise-of-time) non valuable. 
 

III. CHOPPING CURRENTS CALCULATION 
 

 The process of current chopping is the premature 
suppression of 50 Hz or 60 Hz circuit current before normal 
current zero due to instability of the arcs in a vacuum 
interrupter [6]-[7]. Although the current in the vacuum 
interrupter can chop to zero almost instantaneously (fraction 
of a microsecond), the current in the load inductance - 3ph 
coils in the power transformer cannot attain zero value 
instantaneously. Time is required for magnetic energy to be 
transferred from the inductance “transform inductance loads”, 
and for the magnetic field associated with stored energy to 
collapse. 
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