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Abstract – This paper presents SAR patch categorization using 

real and complex valued (CV) deep Convolutional Networks 

(CNN) for categorization of Synthetic Aperture Radar (SAR) 

data. The categorization of Synthetic Aperture Radar (SAR) 

patches consists of feature extraction and classification. Over the 

past few years image categorization using deep learning became 

very popular, because it can handle large databases and has shown 

good recognition results. This paper presents deep convolutional 

networks for Synthetic Aperture Radar patch categorization. We 

have tested convolutional networks with20 layers. The CV-CNN 

consist in general of a real or complex valued input layer, output 

layer and one or more hidden layers. Hidden layers represent any 

combination of convolutional layers, pooling layers, activation 

functions, and are fully defined within complex valued domain. 

The custom database of patches was designed using 3 classes and 

parameters of CV-CNN were observed in order to achieve the best 

accuracy results. 
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I. INTRODUCTION 

Synthetic aperture radar (SAR) is an all-weather, night and 

day imaging system. SAR data sets are nowadays easily 

accessible from different airborne or spaceborne sources as it is 

Sentinel-1 and TerraSAR-X, which are mostly devoted to the 

wider scientific communities. Nowadays a high-resolution 

SAR images acquired from a spaceborne platforms can achieve 

resolution of 10 cm. SAR is particularly suitable for land cover 

classification, target detection, surveillance, land sliding, soil 

moisture etc. Because of scattering mechanism and speckle 

noise in SAR imagery, the interpretation and understanding of 

SAR images is different from visual photo analysis. The image 

understanding, and data interpretation of SAR data has been 

studied over the last few decades. The classical classification 

consists of statistical feature extraction and classification 

methods. Recently, classification using stacked neural 

networks (SNN) or shortly deep learning, which include deep 

belief network (DBN), convolutional neural network (CNN) 

and recurrent neural network (RNN) have shown very good 

recognition results using large databases with many categories. 

By introducing a deep learning theory [1] for automatically 

learning features from a data sets using a multistage approach, 

a deep learning applications have become very attractive. A 

conventional neural networks and support vector machine 

(SVM) need feature extraction process to separate features 

within feature space, otherwise a deep learning does not need 

task-specific feature extractors and its because of this capable 

of learning features automatically from data sets. A deep neural 

network was applied to remote sensing image processing [2] 

and classification [3]. CNN as one of the typical deep learning 

models have achieved impressive performances in various 

fields [4]. It is difficult to separate classes within SAR images, 

because SAR images have complex scattering mechanisms and 

random speckle noise. In [5] a deep neutral network for SAR 

automatic target recognition (ATR) was applied and achieved 

the highest accuracy (more than 99%) on classification of ten-

class targets compared with other cited methods at the time of 

this writing. 

Some complex valued Convolutional Neural networks are 

not new and there has been many different approaches to 

complex-valued classification of real or complex valued 

problems [6]-[7]. Authors in [6] presented a variation of the 

CNN model with complex valued input and weights. The 

complex model as a generalization of the real model was 

proposed. The first investigation of Complex-Valued 

Convolutional Neural Networks (CV-CNN) for object 

recognition on Pol-SAR data was proposed in [8]. An 

architecture with only one single convolutional layer was used 

and showed promising results. A CV-CNN was presented in 

[9], by giving the full deduction of the gradient descent 

algorithm for training this type of networks. The comparison of 

CNN in the real valued domain - Real Valued Convolutional 

Neural Network (RV-CNN) for image classification was 

extended to the complex-valued domain. A deep complex 

valued CNN used for classification was applied to the 

Polarimetric SAR data. A comparison between a RV-CNN and 

CV-CNN was presented in [7]. 

This paper presents the deep convolutional network, which 

uses a real valued and complex valued approach. An influence 

of convolutional filters, number of layers of class recognition 

for complex and real valued SAR data was demonstrated. 

 

II. REAL-VALUED CONVOLUTIONAL NEURAL 

NETWORKS 

Convolutional neural network models are represented by 

utilizing various layers of the neural networks. A convolutional 

neural network consists of input layer followed by optional sub-

sampling and regularization layers and ending in fully 

connected layers. The input into convolutional neural network 
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is an image which is processed by several filters. The response 

of the filter is obtained by the convolution, therefore the 

convolutional response encodes the input and determine 

features by reducing dimensionality. 

The responses of the filters represent inputs to non saturating 

activation function, which can drastically accelerate learning 

process. This is done by special rectified linear units (ReLU), 

which are involved in saturating nonlinearities process. Those 

functions were applied after every convolutional and fully 

connected layer. The final layer uses softmax activation to 

maximize the multinomial logistic regression objective. The 

result of filtering is usually sub-sampled in order to further 

reduce dimension of the features makes invariant features to 

translation. When the max-pool subsampling layers are applied 

a 2 × 2 max-pool layer divides the output into a set 2×2 cells, 

which are not overlapped. The maximum activated filter 

response is recorder into each cell. In this way the input 

dimensions is reduced by 2 and produced features are invariant 

to object translations. 

The architecture of convolutional neural network is depicted 

in Fig. 1, which is composed of four convolution layers and 

three max pooling layers. Each of the first three convolution 

layers is followed by a max pooling layer, with a pooling size 

of 2 × 2 and a stride of 2 pixels. The ReLU nonlinearity is 

applied to every hidden convolution layer. The input image was 

filtered by 20 convolution filters of size 7×7 in the first 

convolution layer, resulting in 20 feature maps. The first 

pooling layer’s outputs are sent into the second convolution 

layer, which has a convolution filter size of 7 × 7, leading to 30 

feature maps. The filter size of the third convolution layer is 7 

× 7, producing 40 feature maps of size. The fourth convolution 

layer includes 50 feature maps with a convolution filter size of 

7 × 7, which brings out 50 feature maps. The dropout 

regularization technique is used before fourth convolutional 

layer. The ReLU nonlinearity was applied after each 

convolutional layer and after fourth convolutional layer, fully 

connected layer with dimension of 2048 was inserted before 

fully connected layers with 1024 and 6 units, respectively. 

After fully connected layers with 2048 and 1024 units, ReLU 

layer was applied. At the end of this convolutional network, 

softmax and classification layers were used. Within this 

convolutional network a dropout layer was used, which 

changes architecture and reduces over-fitting. The idea is to 

connect convolutional and fully connected layers so that hidden 

neuron outputs are deactivated with probability p during 

training. This probability was set to p = 0.5. The drop out layer 

reduces the co-adaptation of neuron. The dropout forces 

neurons to provide more robust contributions with combination 

of arbitrary active neuron. The set of neurons is changed 

randomly in the every epoch and the over-fitting is reduced by 

1/(1−p), if it is compared with the network structure without 

dropout layer. 

 

III. STRUCTURE OF COMPLEX-VALUED 

CONVOLUTIONAL NEURAL NETWORKS 

In this section the CV-CNN architecture is introduced. Same 

as with the normal RV-CNN, the CV-CNN is also based on the 

2D multichannel input or co-called channel maps. However, 

the main difference between the two is that each channel array 

value in CV-CNN is represented in the complex domain as well 

as hidden layers, which are convolutional filters, pooling filter 

and activation functions with complex valued inputs and 

outputs. 

The convolutional layer indicates convolution between the 

sliding window and complex input patch, where the former acts 

as a filter bank. The result is a matrix where each output value 

is calculated with a complex dot product sum of the 

corresponding window and an input patch. Multiple different 

filter banks are used to search for different features of the 

specific region in the input patch. This output data can also be 

interpreted as output maps, which are then further connected to 

a nonlinear sigmoid or tanh activation function. In this 

particular approach the sigmoid function was used with the 

purpose of generating complex feature maps. The convolution 

result, with included previous layers outputs, can now be 

described as  and is calculated by 

 

   

   (1) 

 

where the filter banks are described with  

, input feature maps with  and the bias 

. Variable l represents the number of current layers, 

whereas * represents a convolution operator.  represents 

weighted sum of inputs to the ith output feature maps in the 

layer l +1. The convolutional layer is determined by a number 

of feature maps I, filter size F ×F ×K, stride S and zero-padding 

P. The purpose of the pooling layer is to down-sample the patch 

resolution. Therefore, it is also known as a subsampling layer. 

With this task a spatial invariance is achieved, making the 

network insensitive to small shifts or distortions [11]. This is 

 

 

Fig. 1. Convolutional neural network with 20 layers. 
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mostly realized with the subsampling or max pooling function. 

The subsampling function averages values of the window, 

where the max pooling function takes the maximum value of 

the window. An average function was used and restructured for 

the complex domain as followed 

 

  

 

where g is the pooling size and s is the stride. (x,y) indicates 

the feature map location of ith units . The fully 

connected layer handles the classification after we calculate the 

final output of several convolutional and pooling layers. For the 

CV-CNN multiple fully connected layers have been used to 

connect each neuron with all the neurons in the previous layer 

[11]. The output can be described as 

 

(3) 

(4) 

where K represents the number of neurons in the lth fully 

connected layer. In the final stage the result of multiple neurons 

is inserted to the output layer which then encodes the specific 

patch classes. Output of this layer is represented as a vector, 

described with 1 ∗ C, where C defines the number of classes 

and also represents the length of a vector. Vector also has to be 

a complex value, therefore scalar 1 from the previous equation 

has to be replaced with (1+1 ∗ j). The patch belongs to the class 

whose distance to vector value location is the shortest. 

 

IV. EXPERIMENTAL RESULTS 

4.1. Dataset 

The custom database was designed, which consisted of 10 

Single Look Complex data acquired in the Spotlight mode 

using TerraSAR-X satellite. Data were acquired over different 

urban, agriculture and forest areas with different incidence 

angles. A SAR patch data base was designed by an expert, 

which manually selected several patches per class, where a 

ground truth was known. 3 classes were selected: C01 Urban 

areas, C02 Forest, C03 River. 2000 patches per category were 

selected for training and 1000 patches for testing. The sample 

of SAR patches of all 3 categories are depicted in Fig. 2. In 

Figure samples of classes are depicted horizontally, starting 

with C1, C2 and C3. 

4.2. CNN configuration 

We designed 3 different configurations of CNN and changed 

patch size from 12×12, 24×24 and 48×48. The input was a 

complex valued image, single polarized in complex-valued 

format. For real valued approach we used only detected or 

amplitude data. 

 

The layers of a deep convolutional network were learned in 

the training phase. Three different neural networks were 

learned, one, by one for three different sizes of input patches. 

The parameters of a convolutional are depicted in Fig. 1. 

Within the training process 1000 samples for each class were 

used and convolutional network was learned using 100 epochs. 

The goal of the paper was to investigate a structure of a deep 

neural network and verify its performances.  

 

Tables 1 and 2 report the over all accuracy of the presented 

methods for 3 classes using a single complex-valued HH 

polarized datasets. 1000 images were used for testing stage and 

average accuracy is reported. Tables 1 and 2 show that the best 

accuracy was achieved using a complex valued approach. 

 

TABLE I 

MEAN ACCURACY OF CLASS RECOGNITION IN % FOR PATCH SIZES OF 

12×12, 24×24 AND 48×48 USING A COMPLEX VALUED APPROACH 

Class 12 × 12 24 × 24 48 × 48 
C1 82 84 73 
C2 86 89 64 
C3 84 87 65 
Total(%) 84 86 67 

 

TABLE II 

MEAN ACCURACY OF CLASS RECOGNITION IN % FOR PRESENTED 

METHODS USING REAL VALUED APPROACH. 

Class 12 × 12 24 × 24 48 × 48 
C1 82 81 74 
C2 63 87 57 
C3 68 86 63 
Total(%) 71 84 64 

 

 
From Tables I and II we can conclude that the highest accuracy 

was obtained with the complex-valued convolutional network 

using patch size of 24×24 pixels, then 86% of average accuracy 

was achieved. The real valued convolutional network 

performed the best the patch size of 24×24, providing accuracy 

of 84%. The patch size of 12×12 pixels provided accuracy of 

84% and 71 % for complex valued and real valued case. The 

patch size of 48×48 pixels did not provide good recognition 

results. Experimental results showed that there is still a lot of 

improvements possible in the structure of deep convolutional 

networks. The best possible results could be achieved by 

combining real valued and complex valued parts of the 

convolutional networks. 
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V. CONCLUSION 

In this paper a real valued and a complex valued 

convolutional network for categorization of SAR data were 

compared using different patch sized. Complex valued are real 

valued convolutional networks are not the same, but they 

should be very carefully designed. The experimental results 

showed that complex valued convolutional networks can 

archive better results in recognition in comparison to the real 

valued convolutional networks. 
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