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Portfolio Risk Optimization Based on MVO Model 

Vassil Guliashki1 and Krasimira Stoyanova2 

Abstract – This paper presents a portfolio risk optimization 

based on Markowitz’s mean variance optimization (MVO) 

model. Historical return data for three asset classes are used to 

calculate the optimal proportions of assets, included in the 

portfolio, so that the expected return of each asset is no less than 

in advance given target value. Ten optimization problems are 

solved for different expected rate of return. The optimization is 

performed by a MATLAB solver.  
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I. INTRODUCTION 

Most investors and financial economists acknowledge the 

investment benefits of efficient portfolio diversification. 

Markowitz gave the classic definition of portfolio optimality: 

a portfolio is efficient if it has the highest expected (mean or 

estimated) return for a given level of risk (variance) or, 

equivalently, least risk for a given level of expected return of 

all portfolios from a given universe of securities. The portfolio 

optimization is a hard optimization problem in the finance 

area. There are developed different single objective 

optimization models for different applications in this area. 

This problem is very important. It is connected with the 

choice of a collection of assets to be held by an institution or a 

private individual. The choice should be done in such a way, 

that the expected return (mean profit) is maximized, while the 

risk is to be minimized at the same time. Dependent on users 

preferences, various trade-offs are usually seek. 

The relatively low level of analytical sophistication in the 

culture of institutional equity management is one often-cited 

reason for the lack of acceptance of MV optimization, along 

with organizational and political issues.  

Formulating this problem in optimization terms, Markowitz 

[1] states that, ideally, the investor searches for the optimal 

portfolio, i.e., the portfolio that minimizes the risk (within a 

defined tolerance) while maximizing the return.  

II. PROBLEM FORMULATION 

  The assets S1 , S2, … Sn (n  2) with random returns are 

considered. Let a set of n  N financial assets be given. At 

time t0  R, each asset i has certain characteristics, describing 

its future payoff: Each asset i has an expected rate of return μi 

per monetary unit (e. g. dollars), which is paid at time t1  R, 

t1 > t0. Let μ = [μ1, μ2,…, μn]T. This means if we take a 

position in y  R units of asset 1 at time t0 our expected 

payoff in t1 will be μ1 y units. Let i be the standard deviation 

of the return of asset Si. For i  j, ρij denotes the correlation 

coefficient of the returns of asset Si and Sj. The correlation 

coefficient ρii = 1. Let ζ = (ij) be nn symmetric covariance 

matrix with 2

ii i  and 
ij ij i j     for i  j, and i, j  {1, 

..., n }. In this notation ii is the variance of asset i-th's rate of 

return and ij is the covariance between asset i-th's rate of 

return and asset j-th's rate of return.  

  A portfolio is defined by a vector x  (x1, ..., xn)  Rn, 

which contains the proportions xi  R of the total funds 

invested in securities i  {1, ..., n }. The expected return and 

the variance of the resulting portfolio x  (x1, ..., xn) can be 

presented (see standard Markowitz setting [2 - 7]) as follows:  
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It should be noted that xTζx  0 for any x, since the variance is 

always nonnegative, i. e. ζ is positive semidefinite. It is 

assumed here, that ζ is positive definite, which is equivalent to 

assuming that there are no redundant assets in our collection 

S1, S2, …, Sn. Further it is assumed, that the set of admissible 

portfolios is a nonempty polyhedral set, represented as X  

{x: Ax = b, Cx  d}, where A is an mn matrix, b is m-

dimensional vector, C is a pn matrix and d is a p-

dimensional vector. One constraint of type linear equality in 

the set X in the standard problem formulations is: 
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Simple linear inequality constraints (lower and upper bounds) 

in the set X are connected with the requirement, that the 

proportions (weights) of the portfolio should be nonnegative: 

              0  xi  1, i  {1, ..., n }          (4)  

There are several different single objective model 

formulations of Markowitz’mean-variance optimization 

(MVO) problem (see [7 - 10]). One single objective MVO 

model   is formulated as follows: 

   minx  
1

2

Tx xζ          (5) 

   subject to: μTx  T           (6) 

Ax = b          (7) 

Cx  d.           (8) 

This model corresponds to risk minimization. In the first 

constraint T is a target value, where the expected return is no 
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less than T. In case the problem formulation includes varying 

T between Tmin and Tmax, there will be obtained efficient 

portfolios. 

 

Defining Efficiency 

The notion of defining an optimal set of portfolio weights to 

optimize risk and return is the basis of Markowitz portfolio 

efficiency. The efficiency criterion states: 

A portfolio P* is MV efficient if it has least risk for a given 

level of portfolio expected return. 

The MV efficiency criterion is equivalent to maximizing 

expected portfolio return for a given level of portfolio risk.  

A portfolio P* is MV efficient if it has the maximum expected 

return for a given level of portfolio risk.  

Which formulation of portfolio efficiency is used is a matter 

of convenience.  

 

Optimization Constraints 

Linear constraints are generally included in institutional MV 

portfolio optimization. For example, optimizations typically 

assume that portfolio weights sum to 1(budget constraint eq. 

3) and are nonnegative (no-short-selling constraint eq.4). The 

budget condition is a linear equality constraint on the 

optimization. The no-short-selling condition is a set of sign 

constraints or linear inequalities (one for each asset in the 

optimization) and reflects avoidance of unlimited liability 

investment often required in institutional contexts. In practice, 

optimizations often include many additional linear inequality 

and equality constraints, particularly for equity portfolios.  

 

Computer Algorithms 

Several algorithms are available for calculating MV efficient 

portfolios. Quadratic programming is the technical term for 

the numerical analysis procedure used to compute MV 

efficient portfolio in practice. Quadratic programming 

algorithms allow maximization of expected return and 

minimization of the variance, subject to linear equality and 

inequality constraints (see [11 - 13]).  

Many algorithms are used for computing MV efficient 

portfolios. The choice may depend on convenience, 

computational speed, number of assets, number and character 

of constraints, and required accuracy.  

III. ASSETS DATA USED 

Equity portfolio optimization is typical application of MV 

optimization in asset management. The assets generally 

include broad asset categories, such as U.S. equities and 

corporate and government bonds, international equities and 

bonds, real estate, hedge funds, and venture capital. Sample 

means, variances, and correlations, based on monthly, 

quarterly, or annual historic data, may serve as starting points 

for optimization input estimates. In this study the Markovitz’s 

MVO model is applied to the problem of constructing a long-

only portfolio of French stocks, US bonds and cash deposit. 

Historical return data for these three asset classes are used to 

calculate the optimal proportions of assets, included in a 

portfolio, so that the expected return of each asset is no less 

than in advance given target value. It should be noted that the 

most MVO models combine historical data with other 

indicators such as earnings estimates, analyst ratings, 

valuation and growth metrics, etc. This study differs from the 

above mentioned approaches. It is focused on the price based 

estimates for expositional simplicity.  

IV. ILLUSTRATIVE EXAMPLE  

The 10-year Treasury bond index (CBOE Interest Rate 10 

Year T No (^TNX) for the returns on bonds and the 

EURONEXT 100 (^N100) index for the returns on stocks, are 

used. It is assumed that the cash is invested in a money market 

account whose return is the 1% – deposit interest rate.  For 

each asset historic data are used including the annual times 

series for the “Total Return” from November 1999 through 

February 2018, e.g. for 220 months period (see [14, 15]). 

Let the "Total Return" for asset i = 1,2,3; and t = 0,...,tf 

[months], be denoted by Iit. Here t = 0 corresponds to 

November 1999, and t = tf corresponds to February 2018. For 

each asset i the raw data Iit, t = 0,...,tf, can be converted into 

rates of return rit, t = 0,...,tf  [months], by means of the formula:  
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Let the random rate of return of asset i be denoted by Ti. 

From the historical data we can compute the arithmetic mean 

rate of return for each asset: 
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obtaining for the concrete example the result in Table1: 

Table 1. Arithmetic mean rate of return for each asset 

 Bonds Stocks Interest rate 

Arithmetic mean itr  0,02024% 0,13% 0,084545% 

Since the rates of return are multiplicative over time, it is 

preferred the geometric mean to be used instead of arithmetic 

mean. The geometric mean is the constant monthly rate of 

return, that needs to be applied in months t = 0 through t = 

tf1, in order to get the compounded Total Return Iitf, starting 

from Ii0. The formula for the geometric mean is: 

   μi = 1)1(
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The results for the test example are presented in Table 2:  

Table 2. Geometric mean rate of return for each asset 

 Bonds Stocks Interest rate 

Geometric mean μi 0,36% 0,0123% 0,085% 

Further the covariance matrix is computed: 
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For the test example considered the covariance matrix is 

presented in Table 3: 

Table 3. Covariance matrix for the test example 

Covariance Bonds Stocks Interest rate 

Bonds 0,0076611701 -0,00011479  -0,000000115 

Stocks -0,00011479 0,0023643199 0,0000000086 

Interest rate -0,000000115 0,0000000086 0,0000000020 

The volatility of the rate of return on each asset is 

computed:  

   I  =  ),cov( ji TT .         (13) 

The result is presented in Table 4:  

Table 4. Volatility of the rate of return for each asset   

 Bonds Stocks Interest rate 

Volatility 0,0875 0,0486 0,0000447 

Then the correlation matrix ρij = 
ji

ji TT



),cov(
 is also computed 

(see Table 5): 

Table 5. Correlation matrix for the test example 

Correlation Bonds Stocks Interest rate 

Bonds 1. -0,026993 -0,029453 

Stocks -0,026993 1. -0,0039587 

Interest rate -0,029453 -0,0039587 1. 

Using the covariance matrix from Table 3 the Quadratic 

Programming (QP) formulation of the portfolio optimization 

is: 

min f = [0,0076611701xB
2 + 2.(-0,00011479) xB. xS +  

       + 2.(-0,000000115)xB. xI + 0,0023643199xS
2 + 

       + 2.0,0000000086xS. xI  + 0,0000000020 xI
2 ,          (14) 

subject to:            xB + xS + xI   T  

      xB + xS + xI  = 1 

        xB , xS , xI   0 

This problem is solved 10 times, correspondingly for rate of 

return T = 6%, T = 6,5%, ..., T = 10,5% with increments of 

0,5% by means of fmincon solver of MATLAB 

"Optimization Toolbox" [16], using the Interior pint 

algorithm. 

V. TEST RESULTS 

Starting by T = 6%, after 68 iterations the result presented 

on Fig. 1 obtained. 

The optimization results for all ten optimization problems 

with different T-values by means of fmincon solver of 

MATLAB "Optimization Toolbox" are summarized in Table 

6. 

The curve of efficient frontier is presented on Fig. 2. Every 

optimal portfolio calculated is presented as a triangle lying on 

the efficient frontier in the standard deviation / expected 

return plane. 

 
 

Fig. 1. Optimal portfolio for T = 6% 

The optimization results for all ten optimization problems 

with different T-values by means of fmincon solver of 

MATLAB "Optimization Toolbox" are summarized in Table 1 

as follows:  

Table 6. Optimization results:  

Objective 

function f 

Rate of 

return T [%] 

Iterations Total objective 

function evaluations 

2,57951566 6. 68 275 

2,67812314 6.5 68 275 

2,78430648 7. 68 291 

2.89806094 7.5 66 270 

3.01941047 8. 70 286 

3.14832022 8.5 67 273 

3.28481381 9. 67 279 

3.42888482 9.5 66 271 

3.58054119 10. 71 289 

3.73975732 10.5 67 274 

 

 

Fig. 2. The Efficient frontier curve 
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VI. CONCLUSION 

Portfolio optimization of three classes of assets (bonds, 

stocks and cash deposit - interest rate) was performed. 

Historical return data  (220 monthly returns) for these three 

asset classes are used to calculate the optimal proportions of 

assets, included in the portfolio, so that the expected return of 

each asset is no less than in advance given target value of 

return rate. Fig. 1. shows the results for an optimal portfolio 

by expected return of 6 %. Table 1 shows simulated 

optimizations results from 6 to 10,5 with step increase of 

0.5% for the rate of return T.  Through this simulation we get 

the efficient frontier for the alternative portfolios. The 

efficient frontier is often helpful in understanding the 

investments in the portfolio. It serves as useful guidepost for 

comparing the implications of different portfolios (see [17 - 

19]). Fig. 2 shows the relationship between standard deviation 

and expected return. Logically, as the expected return 

increases, the deviation increases, too. Because of accepted 

pessimistic (conservative) strategy 1% positive increasing 

profitability for a rate of return, the obtained result is that the 

bank deposit option is the most secure. We do not comment 

the security of investment in banks - how sure they are. 

Interesting investigation would be if a negative interest rate 

on the bank deposit is set. Additional experiments on a 

representative sample of benchmark problems should be 

performed for more reliable and precise conclusion about the 

efficiency and efficacy of the applied approach. Hopefully the 

mentioned challenges and potential directions for further 

research will attract more scientists to work in this fruitful 

area in the future. 
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