
 Sozopol, Bulgaria, June 28-30, 2018

131

C# Implementation of Split and Merge Algorithm for

Image Segmentation
Velin Iordanov1 and Ivo Draganov 2

Abstract – In this paper, we propose a C# implementation of

the split and merge algorithm with a main applicability directed

towards image segmentation. The algorithm process color and

grayscale images by splitting them following quad-tree

decomposition over intensity homogeneity criterion. Then

adjacent blocks, including such from different tree levels, are

merged together to form candidate regions for segmentation.

Area filtration of the regions is the final processing step prior to

generating the output map of the application. Testing is done

with images containing printed text over complex background

and promising results are registered.

Keywords – Image Segmentation, Split and Merge, C#, Area

Filtration, Text Extraction.

I. INTRODUCTION

Object detection in digital imagery and its recognition is a

research area in which the main goal is to create a program for

automatic segmentation of content visually embedded on a

complex background.

Methods for object detection, in particular printed text, on a

complex background form three groups: bottom-up [7, 12,

14], heuristic top-down [13, 2, 14] and top-down with

machine learning [6, 8].

In "bottom-up" methods, the location of the text is not

actually determined, it directly segments the image of areas,

and those collapsed as symbolic are merged into words.

Lienhart [7] segments partitioned images with a split-merge

algorithm [5] and a growing region algorithm [9], while

Bunke [12] groups the pixels of the text using a color

clustering algorithm .These methods are sensitive to the size

of the symbols, the available noise and the background type.

Through heuristic "top-down" methods, text blocks are first

identified in the image processed by heuristic filters, then

segmented into text and background areas. Difficulties arise

here, both in detection and in segmentation. In [14] it is

suggested that the text is contained in areas with a highly

variable horizontal structure and additional spatial properties

to be established by analyzing the related components. Smith

et al. [11] localize the text by first locating the vertical edges

with a preformed pattern, and then grouping them into text

areas through a blurring process. The latter two approaches

are quick, but many false searches occur, because often parts

of the background also have a highly contrasting horizontal

structure. Wu et al. [13] describe a text localization method

based on texture segmentation. The method has a high

computational complexity and is sensitive to background

noise. In a more recent work Garcia [2] suggests a localization

of text called a change in edge orientation based on the fact

that text strings contain edges of different orientation. The

disadvantage of the method is the non-use of multiple parallel

edges, also characteristic of text strings. Apart from the

peculiarities of the individual symbols, Sobettka et al. [12]

offer detection based on a string when locating it.

Text detection problems - top-down heuristic methods are

empirical and rely on predefined (operator) visual signs that

often prove to be inappropriate on a complex background;

multiple false searches (80-500%) are generated; learning

methods somewhat solve this problem, but the following

issues remain problematic: how to avoid the considerable time

of classification applied to the entire image and how to reduce

the variation in character size and change in brightness in

terms of more stable features obtained in the pre-training

phase? The process of normalization of the signs here

occupies a central place as an object of intensive research.

In this study we propose a new direct approach of detecting

isolated printed characters in images based on their size

falling in preliminary defined limits over horizontals and

verticals. The segmentation is based on contrast

discrimination in small area employing the split-and-merge

algorithm which attempts to overcome the major limitations

of the aforementioned realizations. It is considered fast and

reliable tool given a priori knowledge of the font sizes within

processed images.

In Section II of the paper full description of the

implemented algorithm is presented. It is done in C#

following a flexible object-oriented module, also described as

a structure in the same section. In Section III some

experimental results are presented and then discussed in

Section IV followed by a conclusion in Section V.

II. IMPLEMENTATION DESCRIPTION

A. Algorithm steps

Grayscale images are directly passed to the input of the

system. If the image is in color then we covert it grayscale

according to:

]][[*11.0]][[*59.0]][[*3.0]][[jibjigjirjim  , (1)

where i=[0,M-1], j=[0,N-1] and the resulting array should be

of type double for preserving precision. After all calculations

we go back to unsigned char representation within the range

from 0 to 255.

1Velin Iordanov is with the Faculty of Telecommunications at

Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,

Bulgaria, E-mail: velin.iordanov@gmail.com
2Ivo Draganov is with the Faculty of Telecommunications at

Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,

Bulgaria, E-mail: idraganov@tu-sofia.bg

 Sozopol, Bulgaria, June 28-30, 2018

132

The obtained array m[M][N] is divided into quarters (Fig.

1) - if any of the dimensions M and/or N does not allow for an

exact division (odd number), then the first halves (left and/or

right) are taken as a half of the whole increased with 1 (it will

always be even) and the rest with 1 less (e.g. if M=7, the

quartile lengths to the left of the whole array are assumed to

be 4 (half the nearest even number) and the lengths of the

quarters to the right are taken 3).

Fig. 1. Two-dimensional array split in quarters

For each quarter the element with maximum and minimum

value is found and so is the difference in absolute value

(positive number) and it is compared with predefined

threshold - thresh1. If thresh1 is greater, all the values of the

quarter elements are replaced with the average of their old

values (again rounded to an integer, but the averaging itself is

not an integer but a double). If thresh1 is less, the current

quarter is divided again into quarters (if again one of its two

or both sizes is an odd number - the approach from above is

applied) and recheck for each new one if the absolute value of

the difference between the maximum and minimum is greater

than or less than thresh1 and the above steps apply. The

splitting of quarters continues until a single element (1 value

of the entire matrix) is reached if necessary.

Here we have rectangular blocks of different sizes

(generally from (M/2)x(N/2) to 1x1 elements) each containing

elements of the same values (the average of their original

values). For each of these blocks, check whether their width

or height (both sizes) exceeds thresh2 - if only one of these

sizes exceeds it - all values of the given block are equalized to

zero.

The array with dimensions MxN elements already has

blocks containing zeros and positive values (the same within

each block separately). For each block consisting of non-zero

elements, all adjacent blocks are checked, which are also non-

zero. The check is done by value - if the difference per

module between the value of the current block (it is one for

the whole) and the currently comparing neighboring (also

one) is less than thresh3 - the two blocks are assumed to be

"connected" and both are replaced with the weighted average

of their two previous values - the number of pixels in one area

of its brightness, collected by the number of pixels of the

other in its brightness and divided by the total number of

pixels for the two areas.

So far we have obtained a two-dimensional array MxN

elements in which we have a number of areas (macro blocks)

whose values are constant (equipotential domains). For each

area obtained, the width and height (in number of elements) of

the smallest rectangle surrounding it (Fig 2). If either the

width or height of an area is less than thresh4, the area values

are equal to zero.

Now we have a two-dimensional array MxN element

containing equipotential domains, each with a value between

0 and 255 (including boundaries) - it is necessary one to be

able to "return" it as a source parameter (e.g. by a pointer to

the memory area) and we can also save it from this function in

a binary file on the disk. All other intermediate areas

(excluding the last received array) from the RAM for

intermediate operations should be cleared.

Fig. 2. Equipotential area dimensions estimation

B.Source design

The diagram of the classes SplitAndMergeSegmenter and

ImageSegment are given in Fig. 3. The splitting is

implemented recursively within the ImageSegment class

where all obtained segments with its internal values and

position within the matrix of the whole image. Division is

applied until block size reaches 1x1 pixels.

The method Merge use a list of all registered segments.

According to the algorithm description from Section II.A

weighted average intensity is associated to the resulting bigger

regions after merging.

The essential parts from the definitions of the classes are

listed below:

public class SplitAndMergeSegmenter

 {

 private const double RedMultiplier = 0.3;

 private const double GreenMultiplier = 0.59;

 private const double BlueMultiplier = 0.11;

 private readonly ICollection<ImageSegment>

segments;

 private readonly Bitmap image;

 private readonly int thresh1;

 private readonly int thresh2;

 private readonly int thresh3;

 private readonly int thresh4;

 public SplitAndMergeSegmenter(Bitmap image, int

thresh1, int thresh2, int thresh3, int thresh4)

 {

 this.image = image;

 this.segments = new List<ImageSegment>();

 this.thresh1 = thresh1;

0

0

M-1

N-1

(½)M (½)M

(½
)N

(½
)N

m[M][N]

 Sozopol, Bulgaria, June 28-30, 2018

133

 this.thresh2 = thresh2;

 this.thresh3 = thresh3;

 this.thresh4 = thresh4;

 }

private void Merge(IEnumerable<ImageSegment>

imageSegments)

 {

 foreach (var segment in imageSegments)

 {

 var block = imageSegments.Where(x =>

CanMerge(x, segment));

 if (block == null)

 {

 continue;

 }

 foreach (var item in block)

 {

 CombineSegments(segment, item);

 }

 }

…

}

public class ImageSegment

 {

 public ImageSegment(int[,] pixels, int topLeftX, int

topLeftY, int bottomLeftX, int bottomLeftY, int

topRightX, int topRightY, int bottomRightX, int

bottomRightY)

 {

 this.Pixels = pixels;

 this.topLeftIndexX = topLeftX;

 this.topLeftIndexY = topLeftY;

 this.topRightIndexX = topRightX;

 this.topRightIndexY = topRightY;

 this.bottomLeftIndexX = bottomLeftX;

 this.bottomLeftIndexY = bottomLeftY;

 this.bottomRightIndexX = bottomRightX;

 this.bottomRightIndexY = bottomRightY;

 this.segments = new List<ImageSegment>();

 }

 public int[,] Pixels { get; set; }

 public int topLeftIndexX { get; set; }

 public int bottomLeftIndexX { get; set; }

 public int topRightIndexX { get; set; }

 public int bottomRightIndexX { get; set; }

 public int topLeftIndexY { get; set; }

 public int bottomLeftIndexY { get; set; }

 public int topRightIndexY { get; set; }

 public int bottomRightIndexY { get; set; }

 public bool isZeroed { get; set; }

 public bool isCombined { get; set; }

public ICollection<ImageSegment> segments { get; set;}

 public void SetAvarageValue(int number)

 { for (int i = 0; i < this.Pixels.GetLength(0); i++)

 { for (int j = 0; j < this.Pixels.GetLength(1); j++)

 { this.Pixels[i, j] = number; } } } } }

Fig. 3. Diagrams of the main application classes

III. EXPERIMENTAL RESULTS

The experimental test set includes 100 color images in RGB

format at 24 bpp with 320x240 pixels in dimension. They are

processes on PC compatible machine with Intel Core 2 Quad

Q8300 CPU running at 2.5 GHz with 4 GB of RAM under

Windows 10 OS. Empirically obtained thresholds based on

font sizes present in the test images are set to be: thresh1 =

100, thresh2 = 5, thresh3 = 70, thresh4 = 1. Segmentation

accuracy and execution time of the current implementation are

presented in Table I compared to those of the implementation

of Wu et al. [13].

TABLE I

SEGMENTATION ACCURACY AND TIME

Para-

meters

Method

Correctly

segmented

symbols,

%

Fragmented

symbols, %

Missed

symbols,

%

Average

execution

time,

sec

[13] 79.6 7.6 12.8 -

Proposed 81.3 10.5 18.2 0.5

 Sozopol, Bulgaria, June 28-30, 2018

134

A single image with its resulting segmented appearance can

be observed in Fig. 4. Due to the low resolution with high

compression ratio in MPEG-1 format (being an excerpt from

SDTV footage with subsequent downsampling) considerable

amount of false detections are attached to the symbols.

Fig. 4. Low resolution TV footage with lots of false detections

Some sample segmented images outside the main test set

are given in Fig. 5 and Fig. 6 where different type of errors in

segmentation appear. All the characters from the image in Fig.

5 are well detected but their edges are jagged because of the

small scale to which splitting blocks emerge at the last

segmentation step.

Fig. 5. Test results over artificially generated image

In the image from Fig. 6 there is large number of missing

letters from the lower part of the text field. The reason for that

is the small font size. Here, additional deteriorations exist as a

sequence of the more complex forms of the characters.

Fig. 6. Processing results for text with various font types and sizes

IV. DISCUSSION

The main influencing factors are textures from the complex

backgrounds in the scenes. This hampers the process of

accurate merging for the blocks that belong to the print

symbols. Another factor is the thickness of the symbols,

which, if below a certain threshold, impedes the removal of

part of the blocks after segmentation. When area filtration is

carried out, sometimes it leads to erosion of the symbols.

Further, accurate segmentation is limited by overlapping

translucent text on a complex background. There solid color

fill of the individual symbols acquire color component

variations, which also leads to disruptions in separate parts.

V. CONCLUSION

The proposed implementation of the split and merge

algorithm in C# offers performance which satisfies potential

users from practical point of view using contemporary

Desktop computers. Its object-oriented class definitions may

be easily extended. It is a practical ground for future

modifications of the algorithm in order to cope with fonts

more complicated in form and imposed in smaller sizes.

Object textures from the background resembling present

characters is the other direction to which further

enhancements should be sought.

REFERENCES

[1] D. Chen, K. Shearer, H. Bourlard, “Text Enhancement with

Asymmetric Filter for Video OCR”, In Proc. of the 11th Int.

Conf. on Image Analysis and Processing, pp. 192–198, Sept.

2001.

[2] C. Garcia, X. Apostolidis, “Text Detection and Segmentation in

Complex Color Images”, In Proc. of the Int. Conf. on Acoustics,

Speech and Signal Processing, pp. 2326–2329, 2000.

[3] O. Hori, “A Video Text Extraction Method for Character

Recogntion”, In Proc. of the Int. Conf. on Document Analysis

and Recognition, pp. 25–28, Sept. 1999.

[4] H. Kamada, K. Fujimoto, “High-speed, High-accuracy

Binrization Method for Recognizing Text in Images of Low

Spatial Resolutions”, In Proc. of the Int. Conf. on Document

Analysis and Recognition, pp. 139–142, Sept. 1999.

[5] R. Laprade, M. Doherty, “Split-and-merge Segmentation using

an F Test Criterion”, SPIE image understanding and man-

machine interface, pp. 74–79, 1987.

[6] H. Li, D. Doermann, “Text Enhancement in Digital Video using

Multiple Frame Integration”, In Proc. of the ACM Multimedia,

vol. 1, pp. 385–395, Orlando, Florida, USA, 1999.

[7] R. Lienhart, “Automatic Text Recognition in Digital Videos”, In

Proc. SPIE, Image and Video Processing IV, pp. 2666–2675,

Jan. 1996.

[8] R. Lienhart, A.Wernicke, “Localizing and Segmenting Text in

Images and Videos”, IEEE Trans. on Circuits and Systems for

Video Technology, vol. 12, no. 4, pp. 256–268, 2002.

[9] T. Pavlidis, Y.T. Liow, “Integrating Region Growing and Edge

Detection”, IEEE Trans. on Pattern Analysis and Machine

Intelligence, pp. 225–233, 1990.

[10] T. Sato, T. Kanade, E. K. Hughes, M. A. Smith, “Video OCR

for Digital News Archives”, In Proc. of the IEEE Workshop on

Content Based Access of Image and Video Databases, pp. 52–

60, Bombay, Jan. 1998.

[11] M. A. Smith, T. Kanade, “Video Skimming for Quick Browsing

based on Audio and Image Characterization”, Technical Report

CMU-CS-95-186, Carnegie Mellon University, July 1995.

[12] K. Sobottka, H. Bunke, H. Kronenberg, “Identification of Text

on Colored Book and Journal Covers”, In Proc. of the Int. Conf.

on Document Analysis and Recognition, pp. 57–63, 1999.

[13] V.Wu, R. Manmatha, E. M. Riseman, “Finding text in images”,

In Proc. of the ACM Int. Conf. Digital Libraries, pp. 23–26,

1997.

[14] Y. Zhong, K. Karu, A. K. Jain, “Locating Text in Complex

Color Images”, Pattern Recognition, vol. 10, no. 28, pp. 1523–

1536, 1995.

