
 Sozopol, Bulgaria, June 28-30, 2018

175

Comparing the performance of SNMP to Network

Telemetry streaming with gRPC/GPB
Ivan Ivanov1

Abstract – This paper compares the performance of SNMP

based network monitoring to Network Telemetry streaming with

remote procedure call framework (gRPC) and Google Protocol

Buffers (GPB). The study focuses on retrieving the ifTable from

network elements using both SNMP and gRPC/GPB based

approach. First, we evaluate the performance of SNMP using

GetNext and GetBulk messages. Then, we get the same ifTable

information encoded with Google Protocol Buffers using TCP and

UDP for transport. The performance is then measured as a

function of the number of retrieved objects. Several aspects are

examined: bandwidth usage, round trip times and CPU.

Keywords –SNMP, gRPC, Network Telemetry, Google Protocol

Buffers, Pipeline, XRV9k

I. INTRODUCTION

Streaming network telemetry is a new paradigm in

networking management and monitoring which hasn’t been

widely deployed yet. It utilizes the idea of “push the data” not

“pull the data”. To retrieve any information from a network

device using SNMP, NMS (Network Management System)

needs to first request this data in form of an SNMP request.

Only then the data can be sent from the network device back to

the NMS in form of SNMP response message/s. This is

repeated every polling interval. To retrieve large amounts of

data, SNMP polling relies on the GetBulk operation. It

performs a continuous GetNext operation that retrieves all the

columns of a given table (e.g. ifTable). The network device will

return as many columns from the ifTable as can fit into a single

packet. If the polling NMS detects that the end of the table has

not yet been reached, it will do another GetBulk and will repeat

the operation until the whole ifTable is fetched.

Streaming network telemetry gains efficiency over SNMP by

eliminating the polling process altogether. Instead of sending

SNMP requests with specific instructions that the network

device must process every time, telemetry uses a configured

policy on the device to know what data to collect, how often

and to which NMS it should be sent.

This paper focuses on retrieving the ifTable from network

devices using SNMP polling and at the same time streaming the

same network information encoded with Google Protocol

Buffers and compare the results.

II. RELATED WORKS

In literature several papers can be found that investigates the

performance of SNMP [1] and compares the performance of

SNMP to Web Services/XML-based monitoring systems [2].

Also, the performance of SNMP trap notification was directly

compared to Web Services notifications using XML gateways

[3]. Few papers have been published that discusses the

performance of SNMP in large-scale deployments and provide

analysis of the traffic patterns of large-scale monitoring

systems [4].

Streaming network telemetry is a new approach for

monitoring and managing communication networks. Early-

release implementations of gRPC-based streaming telemetry

are deployed by vendors like Cisco and Juniper. Several papers

analyze different use cases of this approach [5][6].

This research was directly motivated by these publications

and uses some of the proposed approaches, tools, prototypes

and formulas. The purpose of this paper is to compare the

performance of SNMP to streaming network telemetry using

gRPC with Google Protocol Buffers. In this work, only SNMP

versions 1 and 2c are used for measurements and analysis.

Another study which focuses on SNMPv3 and compares the

performance of the security features of SNMP to streaming

network telemetry using gRPC is being worked upon and will

be published as separate paper related to these works.

III. MEASUREMENT SET-UP

Within this study many of the measurements were performed

on virtual network devices running on VMWare Workstation

Pro 14.1.1 running on top of Windows 10. Used are the

following virtual images and releases:

• Cisco IOS XRv 9000 Router release 6.4.x

• Cisco Nexus 9000/3000 Virtual Switch release 7.0.x

Figure 1. Measurement Set-up

In cases where additional ifTable rows were necessary,

tunnels to other systems were created or dot1q sub-interfaces

were added. ICMP traffic was generated between the systems

to increase the counters of all interfaces. To measure bandwidth

and delay, open source packet analyzer Wireshark was

connected at the traffic capture point as shown Figure 1. The

SNMP polling was done using the latest version of snmp

daemon running on Ubuntu 16.04. Pipeline Telemetry

Collection Service was used as network telemetry collector

running on the same Ubuntu 16.04 host.

1Ivan Ivanov is with the Faculty of Telecommunications at

Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,

Bulgaria, E-mail: ivanov.ivan.iliev@gmail.com.

 Sozopol, Bulgaria, June 28-30, 2018

176

Figure 2. Theoretical SNMP bandwidth consumption

IV. BANDWIDTH USAGE

This section discusses and compares the bandwidth usage

when retrieving data from network elements using SNMP

polling and when receiving the same data via network telemetry

service.

A. SNMP messages and encoding

Since SNMP is fully standardized protocol, the structure of

a v1/v2c message is well defined. It consists of two parts: a

header and a PDU. The header contains two fields: version

(integer) and community (octet string). The PDU consists of

five fields: PDU type (integer), Request ID (integer), Error

Status / Non-repeaters (integer), Error Index/Max-repetitions

(integer) and varlist (sequence). To fully understand the details

of an SNMP frame, it is best to be considered as a set of nested

fields. The main piece of information is the Object Identifier

(OID), which identifies exactly the value to Get (read) or Set

(write).

 The message and it elements are defined as ASN.1

constructs. In SNMP there are two different sets of data:

primitive data and complex data. The length of these data types

is variable, so Basic Encoding Rules (BER) is used to solve this

problem and transmit the message on the wire.

The most common ASN.1 types are INTEGER, OCTET

STRING, OBJECT IDENTIFIER and SEQUENCE. In most

cases, both their ASN.1 type part and ASN.1 length part takes

a single octet. Therefore, the length of any of these common

types depends directly on the length of the ASN.1 value part.

The number of octets needed for the value part varies:

• INTEGER requires between one and five octets

• OCTET STRING requires the same number of octets

as the length of the string.

• OBJECT IDENTIFIER requires the same number of

octets as its length minus one.

• SEQUENCE is a construct for other types and does

not require any octets for its value part.

 Using the formulas derived in [2] "Comparing the

Performance of SNMP and Web Services-Based Management"

IEEE 2004, we can calculate the SNMP bandwidth usage in the

next section.

Figure 3. Measured SNMP bandwidth consumption

B. Theoritical SNMP bandwidth consumtion

For each retrieval operation, two SNMP messages are

required: a request and a response. The number of octets for the

complete operation can be expressed as:

LDataRetrieval = Lrequest + Lresponse (1)

In an SNMP request, the BER encoding of the object value

requires only two octets, because the LValue is NULL.

Therefore, the length of a request and response messages can

be expressed as:

LRequest ≈ 29 + n · (5 + OIDlength) (2)

LResponse ≈ 29 + n · (5 + OIDlength + LObjectValue) (3)

 For all measurements, all retrieved objects were from

the ifTable, therefore the OIDlength will be equal to 11 and we

can rewrite (2) and (3) as:

LGet ≈ 58 + n · (32 + LObjectValue) (4)

LBulk ≈ 74 + 16·n + n·LObjectValue (5)

Using (4) and (5), it is now possible to graphically represent

the SNMP’s bandwidth requirements as a function of the

number of retrieved objects.

To verify the theoretical bandwidth projection on Figure 2,

hundreds of MIB objects were retrieved from network

elements. Retrieval included all rows of the ifTable. The results

are shown on Figure 3. After all measurements were completed,

all results fall into the expected areas.

C. Streaming Network Telemetry encoded with Google

Protocol Buffers (GPB).

Telemetry describes how information from network

elements can be collected using automated communication

processes and transmitted to one or more telemetry collectors.

Network Telemetry is a new approach for network

management and monitoring in which data is streamed from

network elements continuously using a push model and

provides near real-time access to operational statistics (e.g.

ifTable for this paper).

 Sozopol, Bulgaria, June 28-30, 2018

177

Figure 4. Measured bandwidth usage of SNMP vs Streaming Telemetry

Since there is no standard yet for streaming network

telemetry encoded with Google Protocol Buffers, it is not

possible to accurately calculate the upper and lower bounds for

the bandwidth needed to fetch the ifTable data. It had to be

measured. In fact, the bandwidth required depends on specific

Google Protocol Buffer definitions, which varies from case to

case. This paper therefore only discusses the bandwidth

requirements of our prototypes. The discussion focuses on the

prototypes that receive the entire ifTable within a single

interaction.

Interface statistics sent with telemetry using Google Protocol

Buffers represent a superset of SNMP interface statistics since

the network devices store 36 internal statistics for every

interface and the ifTable has only 18 statistics per interface.

Every network device has a big number of internal databases

which store raw data used for operational tasks that the device

is performing. Before this raw information gets available for

exporting out of the device, it has to be indexed and mapped to

a data model. In the case of SNMP, the information is organized

hierarchically using Management Information Bases (MIB)

and Object Identifiers (OID). SNMP imposes a very tight

model when it comes to indexing and exporting. In the case of

the ifTable, each column of the table represents a different

parameter for a given interface, indexed by the ifIndex as show

in Table I.

TABLE I

IFTABLE EXAMPLE

In the case of network telemetry, the internal raw data is

mapped to an open-source data modeling language YANG [7].

The language, being protocol independent, can then be

converted into any encoding format, e.g. XML, JSON or GPB,

that the network configuration protocol supports. In our case,

two types of message encoding with Google Protocol Buffers

are used: Compact-GPB and GPB key-value (GPB k/v). In

compact GPB, the “key” that the network device includes in the

packet is just an integer.

Figure 5. Large scale bandwidth usage of SNMP vs Streaming Telemetry

For the interface statistics, the telemetry collector will get data

that looks like this:

1: GigabitEthernet2/0/1
2: 10000
3: 1500
4: 4243242
5: 43243

Obviously that number 1 stands for the interface name, but

what about 2, 3, 4, 5 etc.? To decode these keys, the telemetry

collector needs a Google Protocol Buffers definition file called

“. proto”. With compact GPB, a “.proto” file must be generated

on the network element for every path that is to be streamed

and uploaded to the network collector.

With this “.proto” file, the network telemetry collector can

determine that key (or “field number”) “4” means

packets_received, “5” means bytes_received, and so on.

This encoding is compact. It is far more efficient to send

integers like “34” across the wire than strings like

“MulticastPacketsReceived.” And GPB is really good at

sending integers on the wire: it uses the concept of “varints”[8]

to serialize integers even more efficiently (i.e. a 64 bit integer

doesn’t actually need to take up 64 bits to be sent on the wire).

From our measurements shown on Figure 6, it is obvious that

the compact-GPB encoding uses the least amount of bandwidth

to transmit the same amount of data (or more) than the other

encoding methods and SNMP GetNext / GetBulk methods.

In the GPB key-value format, the key is sent as a string.

Strings are much less efficient on the wire than varints but they

are self-describing. This means that the network collector

doesn’t need a Google Protocol Buffers definition - “.proto”

file for every path. It uses a single “.proto” file for all paths,

then read the keys to figure out what the values refer to. This

encoding method is easier to set-up on both sides – network

telemetry collector and the network element itself but note how

larger the data usage gets. For example, sending one instance

of the statistics of 653 interfaces takes 610Kbytes of data.

Sending the same interfaces’ statistics encoded with Compact-

GPB takes only 106Kbytes of data. At the same time, retrieving

the same information with SNMP polling takes 258Kbytes.

Therefore, we can conclude that getting the

 Sozopol, Bulgaria, June 28-30, 2018

178

Figure 6. Round-trip delay of SNMP vs delay of Network telemetry

IfTable statistics encoded with Compact-GPB is approximately

2.5 times more bandwidth efficient than SNMP polling with

GetBulk. On the other hand, SNMP GetBulk is approximately

2.5 times more efficient than streaming network telemetry

using GPB key-value pairs.

V. DELAY AND CPU USAGE

The strict semantics of the SNMP GetNext/GetBulk

operations force the network device to traverse the ifTable

column by column from lowest index value to highest. From a

network device’s perspective, that is not optimal. Network

devices store their internal information in a way that is most

efficient for their operational needs. In IOS XR, the internal

data structure for interface statistics is indexed by interface

name and is stored in a structure called a bag. The router’s most

efficient internal bulk data retrieval is to grab a whole bag of

data at once. But the router cannot just send the bag in SNMP.

Instead, it has to re-order the data into a table and walk the

columns to fulfill the GetBulk request indexed by the ifIndex.

Telemetry collects data using the internal bulk data

collection mechanisms, does some minimal processing to filter

and translate the internal structure to a Google Protocol Buffer,

and then pushes the whole thing to the network collector at the

configured intervals.

By eliminating the process of re-ordering of the information

like in the case of SNMP, streaming network telemetry is more

process efficient and requires less CPU cycles. As seen on

Figure 6, measured round-trip delays, including packetization,

serialization and processing of network telemetry data is

approximately 4 times lower than that of SNMP. Figure 7

shows the measured CPU usage at the time of retrieval of the

interface statistics using both SNMP and Compact-GPB.

VI. CONCLUSION

This paper compared the performance of SNMP to network

telemetry streaming encoded with Google Protocol Buffers. In

particular, it investigated the bandwidth usage, delays and CPU

usage.

Figure 7. CPU usage of SNMP vs Network telemetry using Compact-GPB

 Our measurements show that retrieving the ifTable statistics

encoded with Compact-GPB is approximately 2.5 times more

bandwidth efficient than SNMP polling with GetBulk.

Measured round-trip delays, including packetization,

serialization and processing of the telemetry stream is

approximately 4 times lower than that of SNMP. Additionally,

the measurements show that network telemetry is less CPU

intensive than SNMP polling.

 Network telemetry is still complex to set-up and is not

standardized. It lacks compatibility between vendors and even

between different platforms of the same vendor.

REFERENCES

[1] C. Pattinson, "A Study of the Behaviour of the Simple Network

Management Protocol," in Proceedings of DSOM2001, October

2001.

[2] A. Pras, T. Drevers, R. van de Meent and D. Quartel, "Comparing

the performance of SNMP and Web services-based

management," in IEEE Transactions on Network and Service

Management, vol. 1, no. 2, pp. 72-82, Dec. 2004.

[3] W. Queiroz de Lima, R. S. Alves, R. L. Vianna, M. J. B. Almeida,

L. M. R. Tarouco and L. Z. Granville, "Evaluating the

Performance of SNMP and Web Services Notifications," 2006

IEEE/IFIP Network Operations and Management Symposium

NOMS 2006, Vancouver, BC, 2006, pp. 546-556.

[4] J. Schonwalder, A. Pras, M. Harvan, J. Schippers and R. van de

Meent, "SNMP Traffic Analysis: Approaches, Tools, and First

Results," 2007 10th IFIP/IEEE International Symposium on

Integrated Network Management, Munich, 2007, pp. 323-332.

[5] F. Paolucci, A. Sgambelluri, M. Dallaglio, F. Cugini and P.

Castoldi, "Demonstration of gRPC Telemetry for Soft Failure

Detection in Elastic Optical Networks," 2017 European

Conference on Optical Communication (ECOC), Gothenburg,

2017, pp. 1-3.

[6] T. Choi, S. Yoon and S. Song, "Information fusion based agile

streaming telemetry for intelligent traffic analytics of softwarized

network," 2017 19th Asia-Pacific Network Operations and

Management Symposium (APNOMS), Seoul, 2017, pp. 399-402

[7] YANG - A Data Modeling Language for the Network

Configuration Protocol (NETCONF); Internet Engineering Task

Force (IETF) M. Bjorklund, Ed.; Tail-f Systems; October 2010

[8] Google Protocol Buffers Encoding Integers - binary wire format

https://developers.google.com/protocol-buffers/docs/enco

