
 Sozopol, Bulgaria, June 28-30, 2018

204

Zero-Suppressed BDD and collaborative filtering
Katarina Jovanović1 and Milena Stanković2

Abstract – Techniques that enable efficient data sets

manipulation are very important in recommendation systems. In

this paper, we present a method for creating recommendation

using collaborative filtering and Zero-suppressed binary decision

diagram (Zero-suppressed BDD). The binary decision diagrams

(BDDs) are used to analyze problems that occur with large data

sets. One of BDD is ZBDD which is suitable for presenting user-

product matrix that preserves the history of user’s behavior in

the collaborative filtering system. Using diagram traversal, we

allocate similar users and based on the product which users

rated, we create recommendations for a certain user. This way of

creating recommendations can be effective with systems that

work with large number of users and products.

Keywords – Collaborative filtering, Zero-suppressed BDD,

Tuple histogram, Pattern histogram.

I. INTRODUCTION

Collaborative filtering system (CF) is one of the ways for

the recommendation of products that is based on users’

interests and preferences, and selects automatically the

products that might be of interest to people. The goal of these

systems is to assist in the search and selection of products.

The systems for recommendation are based on the assumption

that users who have agreed in the choice of products in the

past, they will agree in choice of products in the future and

they will like a similar kind of products. These users represent

a group of similar users.

CF collects feedback from users on the basis of their rates

of the products and determines that the users are interested in

some products based on their behavior (review, purchase,

commenting on the product). History of users’ behavior

represents the matrix that is called user - product matrix.

Collaborative filtering is widely applied in electronic

commerce, where customers can rate and buy different

products. On the basis of users’ activities, CF generates

recommendations that include products of interest.

Application of this technique is found in the creation of social

networks for recommendation of new friends, groups and

pages.

As already known, ZBDD is used to analyze and solve

problems that arise in large databases. This data structure

manipulates datasets simpler and more efficient than the

original BDD (Binary Decision Diagram) and also provides a

unique and compact set representation. This paper will present

the process of creating recommendations using ZBDD.

II. ZERO-SUPPRESSED BDD

BDDs have been developed to handle Boolean functions,

however, they can also be used to represent sets of

combinations. The term "sets of combinations" represents a

set of elements, where the element is a combination of 𝑛

items. Examples of such data model are combinations of

switching devices (ON/OFF), fault combinations, and sets of

paths in the networks [7].

A combination of 𝑛 items can be represented by an 𝑛-bit

binary vector, (𝑥1𝑥2𝑥3 … 𝑥𝑛) where each bit, 𝑥𝑘𝜖{0,1}

expresses whether or not the item is included in the

combination. ZBDD is a special type of BDDs which

manipulates efficiently with combination sets and it is based

on the special reduction rules.

 Delete all nodes whose 1-edge directly points to the

0-terminal node, and jump through to the 0-edge’s

destination, as shown in Fig 1.

 Share equivalent nodes as well as ordinary BDDs.

 Not to delete the nodes whose two edges point to the

same node, which used to be deleted by the original

rule [7].

Fig. 1. ZBDD reduction rule

The features of ZBDD.

 In ZBDD, the nodes of irrelevant items (those that

are not part of any combination) are automatically

deleted by ZBDD reduction rules.

 ZBDD is especially effective for representing sparse

combinations

 Each path from the root node to 1-terminal node

corresponds to each combination in the set. In fact,

the number of such paths in ZBDD corresponds to

the number of combinations in the set.

 ZBDD structure explicitly stores all items in all

combinations, as well as using an explicit linear

linked list data structure. [7].

Tuple or transaction is a record that contains a combination

of items. The table that contains the number of appearance of

each tuple in the given database is tuple histogram.

In the example of Fig. 2 we show a method of representing

tuple histogram by using ZBDD. The numbers of tuple’s

1Katarina Jovanović is with the Faculty of Electronic Engineering

at University of Niš, Aleksandra Medvedeva 14, Niš 1800, Serbia, E-

mail: katarina_jovanovic@outlook.com.
2Milena Stanković is with the Faculty of Electronic Engineering at

University of Niš, Aleksandra Medvedeva 14, Niš 1800, Serbia.

 Sozopol, Bulgaria, June 28-30, 2018

205

appearances we decompose into 𝑛-digits of ZBDD vector {𝐹0,

𝐹1, . . . , 𝐹𝑛−1}, actually we encode the appearance numbers

into binary digital code as shown in Fig. 2. 𝐹0 represents a set

of tuples appearing odd times, least significant bit, while 𝐹1

represents set of tuples whose second lowest bit of number of

appearances is 1. In similar way we define the set of each digit

up to 𝐹𝑛−1. In the example the tuple frequencies are

decomposed as: 𝐹0 = {𝐼1𝐼2, 𝐼1𝐼2𝐼3, 𝐼2𝐼3}, 𝐹1 = {𝐼1𝐼2, 𝐼2}, 𝐹2 =
{𝐼1𝐼2𝐼3} and each digit can be represented by ZBDD vector.

ZBDD vector in Fig. 2 is constructed base on presented tuple-

histogram. Also, ZBDDs can share their sub-graphs with each

other.

tuple frequency 𝐹2 𝐹1 𝐹0

𝐼1𝐼2 3 (011) 0 1 1
𝐼1𝐼2𝐼3 5 (101) 1 0 1

𝐼2 2 (010) 0 1 0
𝐼2𝐼3 1 (001) 0 0 1

𝐹0 = {𝐼1𝐼2, 𝐼1𝐼2𝐼3, 𝐼2𝐼3}

𝐹1 = {𝐼1𝐼2, 𝐼2}

𝐹2 = {𝐼1𝐼2𝐼3}

The procedure of generating tuple-histogram 𝐹𝑇 for a given

database 𝐷 is shown with pseudocode [7].

𝐹𝑇 = 0
𝑓𝑜𝑟𝑎𝑙𝑙 𝑇 ∈ 𝐷 𝑑𝑜
 𝐹𝑇 = 𝐹𝑇 . 𝑎𝑑𝑑(𝑇)

 𝑟𝑒𝑡𝑢𝑟𝑛 𝐹𝑇 (1)

𝐹𝑇 is tuple-histogram for given database D, 𝐹. 𝑎𝑑𝑑(𝑇) adds

combination (tuple) 𝑇 in the ZBDD vector 𝐹.

After creating a histogram, it is easy to single out the tuples

that appear more than α times. This procedure will be used for

creating ZBDD vector. The number of ZBDD nodes in each

digit is bounded by total appearance of items in all tuples.

A subset of items included in the tuple represents a pattern.

A pattern-histogram is a table that contains the number of

appearance of each pattern in any tuple in the given database.

In fact, a tuple of 𝑘 items includes 2𝑘 patterns.

The procedure of generating pattern-histogram based on

ZBDD is given by pseudocode [7].

𝐹𝑝 = 0

𝑓𝑜𝑟𝑎𝑙𝑙 𝑇 𝜖 𝐷 𝑑𝑜
 𝑃 = 𝑇
 𝑓𝑜𝑟𝑎𝑙𝑙 𝑣 𝜖 𝑇 𝑑𝑜
 𝑃 = 𝑃 ∪ 𝑃. 𝑜𝑛𝑠𝑒𝑡(𝑣)
 𝐹𝑝 = 𝐹𝑝. 𝑎𝑑𝑑(𝑃)

 𝑟𝑒𝑡𝑢𝑟𝑛 𝐹𝑝 (2)

Procedures of generating tuple- histogram and pattern-

histogram have been developed by Shin-ichi Minato and his

team.

III. ZBDD FOR COLLABORATIVE FILTERING

Recommender systems, within the web sites, keep the

history (behavior) for each user in a user-product matrix.

User's history can be written as a combination of products that

are rated by the user. How the binary decision diagrams are

used to represent the combination, the combination of n

products can be represented by n-bit binary vector

(𝑥1𝑥2𝑥3 … 𝑥𝑛), where each bit, 𝑥𝑘𝜖{0,1}, indicates whether

the product is the part of the combination or not.

Table I represents the history of the fifteen users and their

interest in the products (user-product matrix). Numbers greater

than zero indicates that users rated the products while zero

indicates that the products are not rated by users.

TABLE I

USER – PRODUCT MATRIX

Product

𝐼1

𝐼2

𝐼3

𝐼4

𝐼5

𝐼6

𝐼7 User

𝑈1 5 0 4 0 3 0 2

𝑈2 0 2 0 3 0 5 0

𝑈3 4 5 5 0 0 2 3

𝑈4 0 2 2 0 2 2 0

𝑈5 5 0 4 0 0 3 0

𝑈6 2 0 1 0 0 0 0

𝑈7 1 2 0 0 0 0 0

𝑈8 0 0 3 3 3 4 5

𝑈9 5 5 0 0 4 3 2

𝑈10 0 2 2 0 0 3 3

𝑈11 4 0 4 0 5 0 0

𝑈12 0 0 1 5 0 0 0

𝑈13 0 5 0 0 0 4 1

𝑈14 0 3 3 0 0 4 4

𝑈15 5 0 5 0 0 0 0

If we look at the user 𝑈2, from Table I, it can be seen that

the user rated the products 𝐼2, 𝐼4 and 𝐼6, while the user 𝑈5

rated 𝐼1, 𝐼3 and 𝐼6 products.

The user for whom system creates a recommendation is an

active user and in our case it is 𝑈13 user. Before creating

recommendations, it is necessary to form a group of similar

users that are similar to the active user in terms of interests in

products. To find similar users, we take advantage of tuple-

histogram and operations that can be performed on them.

ZBDD vector for tuple histogram is represented in Table II.

Each combination represents one path in the ZBDD diagram.

Therefore, finding similar users is based on the tour of

diagram and extracts paths that match with the paths that are

appropriate to the active user in 𝑘 or more segments.

Fig. 2. ZBDD vector for tuple histogram

 Sozopol, Bulgaria, June 28-30, 2018

206

TABLE II

ZBDD VECTOR FOR TUPLE HISTOGRAM

Tuple Frequency 𝐹1 𝐹0

𝐼1𝐼3𝐼5𝐼7 1(01) 0 1

𝐼2𝐼4𝐼6 1(01) 0 1

𝐼1𝐼2𝐼3𝐼6𝐼7 1(01) 0 1

𝐼2𝐼3𝐼5𝐼6 1(01) 0 1

𝐼1𝐼3𝐼6 1(01) 0 1

𝐼1𝐼3 2(10) 1 0

𝐼1𝐼2 1(01) 0 1

𝐼3𝐼4𝐼5𝐼6𝐼7 1(01) 0 1

𝐼1𝐼2𝐼5𝐼6𝐼7 1(01) 0 1

𝐼2𝐼3𝐼6𝐼7 2(01) 1 0

𝐼1𝐼3𝐼5 1(01) 0 1

𝐼3𝐼4 1(01) 0 1

𝐼2𝐼6𝐼7 1(01) 0 1

𝐹0 = {
𝐼1𝐼3𝐼5𝐼7, 𝐼2𝐼4𝐼6, 𝐼1𝐼2𝐼3𝐼6𝐼7, 𝐼2𝐼3𝐼5𝐼6, 𝐼1𝐼3𝐼6, 𝐼1𝐼2,

𝐼3𝐼4𝐼5𝐼6𝐼7, 𝐼1𝐼2𝐼5𝐼6𝐼7, 𝐼1𝐼3𝐼5, 𝐼3𝐼4, 𝐼2𝐼6𝐼7
}

𝐹1 = {𝐼1𝐼3, 𝐼2𝐼3𝐼6𝐼7}

Operation, which will be used in determining similar users, is

finding all combinations that contain given pattern.

𝑆 =∪ 𝐹𝑘
𝑓𝑜𝑟𝑎𝑙𝑙 𝑣 ∈ 𝑃 𝑑𝑜:
 𝑆 = 𝑆. 𝑜𝑛𝑠𝑒𝑡(𝑣). 𝑐ℎ𝑎𝑛𝑔𝑒(𝑣)

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑆 (3)

S is union of tuples which contain pattern P, S.onset(v) selects

the subset of combinations including item v and S.change(v)

inverts existence of v (add / delete) on each combination (see

table with primitive ZBDD operations [7]).

Patterns with one element that match the active user's

combination is 𝑃 → { 𝐼2, 𝐼6, 𝐼7}. ZBDDsimilarUsers

algoritham finds all combinations which contain patterns from

ZBDDsimilarUsers(𝐹)

{

 𝑆 =∪ 𝐹𝑘

 𝑓𝑜𝑟𝑎𝑙𝑙 𝑣 ∈ 𝑃 𝑑𝑜:
 𝑆 = 𝑆. 𝑜𝑛𝑠𝑒𝑡(𝑣). 𝑐ℎ𝑎𝑛𝑔𝑒(𝑣)

 𝑓𝑜𝑟𝑎𝑙𝑙 𝑇 ∈ 𝑆
 𝑐𝑜𝑢𝑛𝑡𝑇 = 0

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑆. 𝑐𝑜𝑢𝑛𝑡

 𝑖𝑓(𝑇 = 𝑆[𝑖])

 𝑐𝑜𝑢𝑛𝑡𝑇 = 𝑐𝑜𝑢𝑛𝑡𝑇 + 1

 𝑖𝑓(𝑐𝑜𝑢𝑛𝑡𝑇 ≥ 𝛼)

 𝑆𝑢 = 𝑆𝑢 𝑈 𝑇

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑆𝑢

}

Fig. 3. Find similar users algorithm

the set P. Combinations that contain 𝛼 or more patterns from

set P belong to group of similar users. The ZBDDsimilarUsers

algorithm is shown in Fig 3.

All combinations are stored in a collection S. The parameter

𝛼 depends on the recommendation system and represents

number that indicates that two users are similar if they rated α

or more the same products.

If the combination T from set S appears 𝛼 or more times, it

means that the active user and the user to whom refers this

combinations are similar. All combinations that satisfy the

requirement are placed in a collection 𝑆𝑢 which contains all

similar users.

In order to determine the product group for the

recommendation, it is necessary for each combination from

the set 𝑆𝑢 to extract patterns that contain one element. If the

pattern is part of active user’s combinations, it will not be

included in the group for recommendation while other

patterns will be included in recommendation. A set of

products for a recommendation is obtained by separating

nodes that are not the part of active user's path in ZBDD. If Q

represents patterns of similar users, P represents patterns of

the active users and R represents products for

recommendation, procedure to extract the products is:

 𝑅 = 𝑄 − 𝑄 ∩ 𝑃 (4)

After determining group of products for recommendation it

is needed to define top N products for recommendation and

order of recommendation. By computing the average rate of

products from the group and sorting them by the average

rates, we obtain the order of the products for the

recommendation. The average product’s rate represents

weight of the branch in ZBDD vector.

IV. CONCLUSION

In this paper we presented a method for creating

recommendations using collaborative filtering and ZBDD.

This way of creating recommendation provides simpler

manipulation with data sets. Here are given procedures for

finding similar users and creating group of products for

recommendation. Finding similar users is based on a touring

of ZBDD diagram and extracting sub-diagram which

represents similar users. The nodes in the ZBDD sub-diagram,

which are not part of the active user’s path, are products for

recommendation. Sorting the products by rates we determine

the order in which products will be recommended to active

user.

REFERENCES

[1] D. Asanov, “Algorithms and Methods in Recommender

System”, Berlin Institute of Technology, Berlin, Germany.

[2] M. D. Ekstran, J. T. Riedl. and J. A. Konstan, “Collaborative

Filtering Recommender Systems”, Foundations and Trends® in

Human–Computer Interaction: vol. 4, no. 2, pp. 81–173, 2011.

 Sozopol, Bulgaria, June 28-30, 2018

207

[3] M. Jones, “Recommender systems”,

http://www.ibm.com/developerworks/library/os-

recommender1/, accessed on 01.05.2017.

[4] J. Lee., M. Sun, G. Lebanon, “A Comparative Study of

Collaborative Filtering Algorithm”, Workshops, Demos, and

ArXiv Preprints, 2012

[5] P. Melville and V. Sindhwani, “Recommender system”, In: C.

Sammut and G. Webb, Eds., Encyclopedia of Machine

Learning, Springer, Berlin, 2010, pp. 829-838.

[6] S. Minato and H. Arimura , “Generating Frequent Closed Item

Sets Based on Zero-suppressed BDDs”, Hokkaido University,

Division of Computer Science, TCS Technical Reports, TCS-

TR-A-06-17, Jul. 2006

[7] S. Minato and H. Arimura, “Combinatorial Item Set Analysis

Based on Zero-Suppressed BDDs”, Hokkaido University,

Division of Computer Science, TCS Technical Reports, TCS-

TR-A-04-1, Dec, 2004.

[8] X. Su and T. M. Khoshgoftaar, “A Survey of Collaborative

Filtering Techniques”, Advances in Artificial Intelligence, vol.

2009, Article ID 421425, 19 pages, 2009.

[9] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based

collaborative filtering recommendation algorithm”, In

Proceedings of the 10th International Conference on World

Wide Web (pp. 285-295). (WWW '01). New York, NY, USA:

ACM.

http://www-alg.ist.hokudai.ac.jp/tr.html
http://www.ibm.com/developerworks/library/os-recommender1/
http://www.hindawi.com/19583120/
http://www-alg.ist.hokudai.ac.jp/tr.html
http://www.hindawi.com/21346153/
http://www.ibm.com/developerworks/library/os-recommender1/

