
                                           Sozopol, Bulgaria, June 28-30, 2018 

204 

 

Zero-Suppressed BDD and collaborative filtering 
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Abstract – Techniques that enable efficient data sets 

manipulation are very important in recommendation systems. In 

this paper, we present a method for creating recommendation 

using collaborative filtering and Zero-suppressed binary decision 

diagram (Zero-suppressed BDD). The binary decision diagrams 

(BDDs) are used to analyze problems that occur with large data 

sets. One of BDD is ZBDD which is suitable for presenting user-

product matrix that preserves the history of user’s behavior in 

the collaborative filtering system. Using diagram traversal, we 

allocate similar users and based on the product which users 

rated, we create recommendations for a certain user. This way of 

creating recommendations can be effective with systems that 

work with large number of users and products. 

 

Keywords – Collaborative filtering, Zero-suppressed BDD, 

Tuple histogram, Pattern histogram. 

 

I.  INTRODUCTION 

Collaborative filtering system (CF) is one of the ways for 

the recommendation of products that is based on users’ 

interests and preferences, and selects automatically the 

products that might be of interest to people. The goal of these 

systems is to assist in the search and selection of products. 

The systems for recommendation are based on the assumption 

that users who have agreed in the choice of products in the 

past, they will agree in choice of products in the future and 

they will like a similar kind of products. These users represent 

a group of similar users.  

CF collects feedback from users on the basis of their rates 

of the products and determines that the users are interested in 

some products based on their behavior (review, purchase, 

commenting on the product). History of users’ behavior 

represents the matrix that is called user - product matrix. 

Collaborative filtering is widely applied in electronic 

commerce, where customers can rate and buy different 

products. On the basis of users’ activities, CF generates 

recommendations that include products of interest. 

Application of this technique is found in the creation of social 

networks for recommendation of new friends, groups and 

pages. 

As already known, ZBDD is used to analyze and solve 

problems that arise in large databases. This data structure 

manipulates datasets simpler and more efficient than the 

original BDD (Binary Decision Diagram) and also provides a 

unique and compact set representation. This paper will present 

the process of creating recommendations using ZBDD. 

II. ZERO-SUPPRESSED BDD 

BDDs have been developed to handle Boolean functions, 

however, they can also be used to represent sets of 

combinations. The term "sets of combinations" represents a 

set of elements, where the element is a combination of 𝑛 

items. Examples of such data model are combinations of 

switching devices (ON/OFF), fault combinations, and sets of 

paths in the networks [7]. 

A combination of 𝑛 items can be represented by an 𝑛-bit 

binary vector, (𝑥1𝑥2𝑥3 … 𝑥𝑛) where each bit, 𝑥𝑘𝜖{0,1} 

expresses whether or not the item is included in the 

combination. ZBDD is a special type of BDDs which 

manipulates efficiently with combination sets and it is based 

on the special reduction rules. 

 Delete all nodes whose 1-edge directly points to the 

0-terminal node, and jump through to the 0-edge’s 

destination, as shown in Fig 1. 

 Share equivalent nodes as well as ordinary BDDs. 

 Not to delete the nodes whose two edges point to the 

same node, which used to be deleted by the original 

rule [7]. 

 

 
Fig. 1. ZBDD reduction rule 

The features of ZBDD. 

 

 In ZBDD, the nodes of irrelevant items (those that 

are not part of any combination) are automatically 

deleted by ZBDD reduction rules. 

 ZBDD is especially effective for representing sparse 

combinations 

 Each path from the root node to 1-terminal node 

corresponds to each combination in the set. In fact, 

the number of such paths in ZBDD corresponds to 

the number of combinations in the set. 

 ZBDD structure explicitly stores all items in all 

combinations, as well as using an explicit linear 

linked list data structure. [7]. 

 

Tuple or transaction is a record that contains a combination 

of items. The table that contains the number of appearance of 

each tuple in the given database is tuple histogram. 

In the example of Fig. 2 we show a method of representing 

tuple histogram by using ZBDD. The numbers of tuple’s 
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appearances we decompose into 𝑛-digits of ZBDD vector {𝐹0, 

𝐹1, . . . , 𝐹𝑛−1}, actually we encode the appearance numbers 

into binary digital code as shown in Fig. 2. 𝐹0 represents a set 

of  tuples appearing odd times, least significant bit, while 𝐹1 

represents set of tuples whose second lowest bit of number of 

appearances is 1. In similar way we define the set of each digit 

up to 𝐹𝑛−1. In the example the tuple frequencies are 

decomposed as: 𝐹0 = {𝐼1𝐼2, 𝐼1𝐼2𝐼3, 𝐼2𝐼3}, 𝐹1 = {𝐼1𝐼2, 𝐼2}, 𝐹2 =
{𝐼1𝐼2𝐼3} and each digit can be represented by ZBDD vector. 

ZBDD vector in Fig. 2 is constructed base on presented tuple-

histogram. Also, ZBDDs can share their sub-graphs with each 

other. 

 
tuple frequency 𝐹2 𝐹1 𝐹0 

𝐼1𝐼2 3 (011) 0 1 1 
𝐼1𝐼2𝐼3 5 (101) 1 0 1 

𝐼2 2 (010) 0 1 0 
𝐼2𝐼3 1 (001) 0 0 1 

 

 

 

𝐹0 = {𝐼1𝐼2, 𝐼1𝐼2𝐼3, 𝐼2𝐼3} 

𝐹1 = {𝐼1𝐼2, 𝐼2} 

𝐹2 = {𝐼1𝐼2𝐼3} 

 

The procedure of generating tuple-histogram 𝐹𝑇 for a given     

database 𝐷  is shown with pseudocode [7]. 

 

𝐹𝑇 = 0 
𝑓𝑜𝑟𝑎𝑙𝑙 𝑇 ∈ 𝐷 𝑑𝑜 
  𝐹𝑇 = 𝐹𝑇 . 𝑎𝑑𝑑(𝑇) 

                               𝑟𝑒𝑡𝑢𝑟𝑛 𝐹𝑇           (1) 
 

𝐹𝑇 is tuple-histogram for given database D, 𝐹. 𝑎𝑑𝑑(𝑇) adds 

combination (tuple) 𝑇 in the ZBDD vector 𝐹. 

After creating a histogram, it is easy to single out the tuples 

that appear more than α times. This procedure will be used for 

creating ZBDD vector. The number of ZBDD nodes in each 

digit is bounded by total appearance of items in all tuples. 

A subset of items included in the tuple represents a pattern. 

A pattern-histogram is a table that contains the number of 

appearance of each pattern in any tuple in the given database. 

In fact, a tuple of 𝑘 items includes 2𝑘 patterns. 

The procedure of generating pattern-histogram based on 

ZBDD is given by pseudocode [7]. 

 

𝐹𝑝 = 0 

𝑓𝑜𝑟𝑎𝑙𝑙 𝑇 𝜖 𝐷 𝑑𝑜 
    𝑃 = 𝑇 
   𝑓𝑜𝑟𝑎𝑙𝑙 𝑣 𝜖 𝑇 𝑑𝑜 
      𝑃 = 𝑃 ∪ 𝑃. 𝑜𝑛𝑠𝑒𝑡(𝑣) 
   𝐹𝑝 = 𝐹𝑝. 𝑎𝑑𝑑(𝑃) 

                                    𝑟𝑒𝑡𝑢𝑟𝑛 𝐹𝑝            (2) 

Procedures of generating tuple- histogram  and  pattern-

histogram  have been developed by Shin-ichi Minato and his 

team.  

 

III. ZBDD FOR COLLABORATIVE FILTERING 

Recommender systems, within the web sites, keep the 

history (behavior) for each user in a user-product matrix. 

User's history can be written as a combination of products that 

are rated by the user. How the binary decision diagrams are 

used to represent the combination, the combination of n 

products can be represented by n-bit binary vector 

(𝑥1𝑥2𝑥3 … 𝑥𝑛), where each bit, 𝑥𝑘𝜖{0,1}, indicates whether 

the product is the part of the combination or not.  

Table I represents the history of the fifteen users and their 

interest in the products (user-product matrix). Numbers greater 

than zero indicates that users rated the products while zero 

indicates that the products are not rated by users.  

TABLE I 

USER – PRODUCT MATRIX 

Product  

𝐼1 

 

𝐼2 

 

𝐼3 

 

𝐼4 

 

𝐼5 

 

𝐼6 

 

𝐼7 User 

𝑈1 5 0 4 0 3 0 2 

𝑈2 0 2 0 3 0 5 0 

𝑈3 4 5 5 0 0 2 3 

𝑈4 0 2 2 0 2 2 0 

𝑈5 5 0 4 0 0 3 0 

𝑈6 2 0 1 0 0 0 0 

𝑈7 1 2 0 0 0 0 0 

𝑈8 0 0 3 3 3 4 5 

𝑈9 5 5 0 0 4 3 2 

𝑈10 0 2 2 0 0 3 3 

𝑈11 4 0 4 0 5 0 0 

𝑈12 0 0 1 5 0 0 0 

𝑈13 0 5 0 0 0 4 1 

𝑈14 0 3 3 0 0 4 4 

𝑈15 5 0 5 0 0 0 0 

 

If we look at the user 𝑈2, from Table I, it can be seen that 

the user rated the products 𝐼2, 𝐼4 and 𝐼6, while the user 𝑈5 

rated  𝐼1, 𝐼3 and 𝐼6 products. 

The user for whom system creates a recommendation is an 

active user and in our case it is 𝑈13 user. Before creating 

recommendations, it is necessary to form a group of similar 

users that are similar to the active user in terms of interests in 

products. To find similar users, we take advantage of tuple-

histogram and operations that can be performed on them. 

ZBDD vector for tuple histogram is represented in Table II. 

Each combination represents one path in the ZBDD diagram. 

Therefore, finding similar users is based on the tour of 

diagram and extracts paths that match with the paths that are 

appropriate to the active user in 𝑘 or more segments. 

 

 

Fig. 2. ZBDD vector for tuple histogram 
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TABLE II 

ZBDD VECTOR FOR TUPLE HISTOGRAM 

Tuple Frequency 𝐹1 𝐹0 

𝐼1𝐼3𝐼5𝐼7 1(01) 0 1 

𝐼2𝐼4𝐼6 1(01) 0  1 

𝐼1𝐼2𝐼3𝐼6𝐼7 1(01) 0 1 

𝐼2𝐼3𝐼5𝐼6 1(01) 0 1 

𝐼1𝐼3𝐼6 1(01) 0 1 

𝐼1𝐼3 2(10) 1 0 

𝐼1𝐼2 1(01) 0 1 

𝐼3𝐼4𝐼5𝐼6𝐼7 1(01) 0 1 

𝐼1𝐼2𝐼5𝐼6𝐼7 1(01) 0 1 

𝐼2𝐼3𝐼6𝐼7 2(01) 1 0 

𝐼1𝐼3𝐼5 1(01) 0 1 

𝐼3𝐼4 1(01) 0 1 

𝐼2𝐼6𝐼7 1(01) 0 1 

 

𝐹0 = {
𝐼1𝐼3𝐼5𝐼7, 𝐼2𝐼4𝐼6, 𝐼1𝐼2𝐼3𝐼6𝐼7, 𝐼2𝐼3𝐼5𝐼6, 𝐼1𝐼3𝐼6, 𝐼1𝐼2,

𝐼3𝐼4𝐼5𝐼6𝐼7, 𝐼1𝐼2𝐼5𝐼6𝐼7, 𝐼1𝐼3𝐼5, 𝐼3𝐼4, 𝐼2𝐼6𝐼7
} 

𝐹1 = {𝐼1𝐼3, 𝐼2𝐼3𝐼6𝐼7} 

 

Operation, which will be used in determining similar users, is 

finding all combinations that contain given pattern. 

 

𝑆 =∪ 𝐹𝑘  
𝑓𝑜𝑟𝑎𝑙𝑙 𝑣 ∈ 𝑃 𝑑𝑜: 
  𝑆 = 𝑆. 𝑜𝑛𝑠𝑒𝑡(𝑣). 𝑐ℎ𝑎𝑛𝑔𝑒(𝑣) 

                             𝑟𝑒𝑡𝑢𝑟𝑛 𝑆             (3) 

 

S is union of tuples which contain pattern P, S.onset(v) selects 

the subset of combinations including item v and S.change(v) 

inverts existence of v (add / delete) on each combination (see 

table with primitive ZBDD operations [7]). 

Patterns with one element that match the active user's 

combination is 𝑃  →  { 𝐼2, 𝐼6, 𝐼7}. ZBDDsimilarUsers 

algoritham finds all combinations which contain patterns from  

 

ZBDDsimilarUsers(𝐹) 

{ 

     𝑆 =∪ 𝐹𝑘 

     𝑓𝑜𝑟𝑎𝑙𝑙 𝑣 ∈ 𝑃 𝑑𝑜: 
             𝑆 = 𝑆. 𝑜𝑛𝑠𝑒𝑡(𝑣). 𝑐ℎ𝑎𝑛𝑔𝑒(𝑣) 

     𝑓𝑜𝑟𝑎𝑙𝑙 𝑇 ∈  𝑆 
            𝑐𝑜𝑢𝑛𝑡𝑇 = 0 

       𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑆. 𝑐𝑜𝑢𝑛𝑡 

          𝑖𝑓(𝑇 =  𝑆[𝑖]) 

            𝑐𝑜𝑢𝑛𝑡𝑇 = 𝑐𝑜𝑢𝑛𝑡𝑇 + 1 

       𝑖𝑓(𝑐𝑜𝑢𝑛𝑡𝑇 ≥  𝛼) 

          𝑆𝑢 = 𝑆𝑢 𝑈 𝑇 

      𝑟𝑒𝑡𝑢𝑟𝑛 𝑆𝑢 

}  

 
Fig. 3. Find similar users algorithm 

the set P. Combinations that contain 𝛼 or more patterns from 

set P belong to group of similar users. The ZBDDsimilarUsers 

algorithm is shown in Fig 3. 

All combinations are stored in a collection S. The parameter 

𝛼 depends on the recommendation system and represents 

number that indicates that two users are similar if they rated α 

or more the same products. 

If the combination T from set S appears 𝛼 or more times, it 

means that the active user and the user to whom refers this 

combinations are similar. All combinations that satisfy the 

requirement are placed in a collection 𝑆𝑢 which contains all 

similar users.  

In order to determine the product group for the 

recommendation, it is necessary for each combination from 

the set 𝑆𝑢 to extract patterns that contain one element. If the 

pattern is part of active user’s combinations, it will not be 

included in the group for recommendation while other 

patterns will be included in recommendation. A set of 

products for a recommendation is obtained by separating 

nodes that are not the part of active user's path in ZBDD. If Q 

represents patterns of similar users, P represents patterns of 

the active users and R represents products for 

recommendation, procedure to extract the products is: 

 

                                  𝑅 = 𝑄 − 𝑄 ∩ 𝑃           (4) 

 

After determining group of products for recommendation it 

is needed to define top N products for recommendation and 

order of recommendation. By computing the average rate of 

products from the group and sorting them by the average 

rates, we obtain the order of the products for the 

recommendation. The average product’s rate represents 

weight of the branch in ZBDD vector.  

 

IV. CONCLUSION 

In this paper we presented a method for creating 

recommendations using collaborative filtering and ZBDD. 

This way of creating recommendation provides simpler 

manipulation with data sets. Here are given procedures for 

finding similar users and creating group of products for 

recommendation. Finding similar users is based on a touring 

of ZBDD diagram and extracting sub-diagram which 

represents similar users. The nodes in the ZBDD sub-diagram, 

which are not part of the active user’s path, are products for 

recommendation. Sorting the products by rates we determine 

the order in which products will be recommended to active 

user. 
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