
 Sozopol, Bulgaria, June 28-30, 2018

38

Checking of Real-Time Control Logic Specifications

using Logic Programming and SMT solvers
Andrey Tyugashev1 and Dmitrii Zheleznov2

Abstract –In this paper the information about application of

SMT solvers in area of Mission Critical Software verification are

given. Rules of verification are based on Real-Time Control

Algorithm’s Logic. Required specification can be feasible or non-

feasible on defined basis of functional control processes. In

proposed approach, feasibility of the specification is being

checked by SMT solver Z3. SMT Solver is called from special

Java application through API.

Keywords –control logic; functional process; logical vector;

real-time control algorithm; logic programming; SMT solver.

I. INTRODUCTION

The modern technical object such as airplane, submarine,

spacecraft or nuclear power station can be reviewed as

‘system of the systems’ including a lot of subsystems,

actuators, sensors, other devices. Like an orchestra playing

symphony, all of these devices should co-function in

harmonic manner to produce a useful outcome. Each

instrument must to start play at a right time. In orchestra, the

conductor performs control functions. In modern complex

technical complexes, the control system should provide the

same functionality. The human could be involved in the

process in case of automated control, or not be involved in

case of automatic system. Discussing complexity level of

control system we can note that in according to Ashby’s Law

of Requisite Variety [1], “Variety absorbs variety”, so the

complexity of control system should be adequate to

complexity of controlled object. Control system realizes

corresponding control algorithms. The ‘input data’ for control

algorithms is so-named ‘control logic’. In fact, this logic is

representation of coordinated functioning of all units needed

to achieve the goal of our system. The ‘coordinated’ word

means here both semantic coordination related to physical

restrictions and logic of actions, and coordination in time. The

time characteristics of control logic should be adequate to

speed of ongoing physical processes associated with the

controlled technical complex [2-5].

The very important problem for control logic of complex

technical object is evaluation of its parameters and checking if

these values are correspond to existing physical and

technological constraints. This issue is actual both at design

stage when the key question is feasibility of requirements, and

during operation of existing technical object when we need,

for example, to analyze performance. This paper is focused on

timing (synchronization) parameters, and degree of use of

accessible resources (level of workload/overload). The

problem has an additional importance due to its straight

connection to dependability/safety issues.

Today, as a rule, the control logic’s evaluation is being

performed by human. Unfortunately, the number of

parameters which must be analyzed, for example, for modern

spacecraft, can be very big and exceeds the human

opportunities. The purpose of the work is to provide

automation to this process. We utilize two approaches for

evaluation of the control logic – use of SMT solvers, and

logical programming.

Herewith, we can review potentially useful approach

connected with apply of existing SMT automation tools to

provide assistance to specialists responsible for control logic’s

evaluation [6-7]. The very popular and promising technology

today is Satisfiability Modulo Theories (SMT) approach.

SMT supported by a lot of commercial and free solvers such

as ABSolver, Alt-Ergo, Barcelogic, MathSAT, CVC,

OpenSMT, Simplify, STeP, Yices, Z3, etc. We can specify the

existing constraints using smt-lib formal language, and then

get the answer if the system satisfies (sat) the constraints, or

not (unsat). The system even can calculate the values of the

variables which provide satisfiability.

In this paper we want also to remind about power and

opportunities provided by logic programming. In fact, internal

logical inference machine provide us with opportunities

comparable with features of modern SMT solvers. Moreover,

the logic programming systems are very close by their nature

to specificity of Real-Time Control Algorithm’s Logic applied

to checking of properties of control algorithms. So, we present

the corresponding example of application of logic

programming in our domain.

II. METHOD

A. Real-Time Control Logic

In previous papers [3,6,7] we had proposed the semantic

model for real-time control algorithm. The model represents

control actions by the set of following tuples:

RTCL = {< fi, ti,i, li > }, i=1..N (1)

fi represents an identifier of functional process to be

executed, and: ti – time of fi begin (non-negative integer), i –

its duration (non-negative integer). li is a ‘logical vector’

defining whether process should be executed. The logical

vector consists of logical variables within checked values:

(1=0, 2=1, 3= 0, 4=H, 5=H). Herewith, 1 and 0

1Andrey Tyugashev is with the Dept. of Applied Mathematics and

Computer Science, Samara State Transport University, 2V Svobody

Street, Samara 443066, Russia, E-mail: a.tyugashev@samgups.ru.
2Dmitrii Zheleznov is Rector of Samara State Transport

University, 2V Svobody Street, Samara 443066, Russia, E-mail:

rektorat@samgups.ru Blvd, Sofia 1000, Bulgaria.

 Sozopol, Bulgaria, June 28-30, 2018

39

corresponds to True and False, and ‘H‘ value means that

execution of the process is not depends on value of this logical

variable. The presence of logical variables in the model allows

specifying a set of options of implementation of the algorithm

(including normal and abnormal situations).

Some parameters can be specified by a known constants,

some be initially unknown and stated as variables.

The constraints and requirements for real-time control logic

can be specified using language of CA formal theory (calculus

of real-time control algorithms) proposed by A.A. Kalentyev

[3-4]. The extended version of this theory developed by

author [6] – Real-Time Control Algorithm’s Logic allows its

usage for real control logic specification and verification.

We focus on synchronization of functional processes to be

executed. The synchronization of two processes can be

expressed by following operators: coincidence by begin

(named CH from Russian abbreviation), coincidence by end

(named CK), direct following (→), time uncrossing (<>),

precedence (<), strict precedence (<<), the overlap with the

specified shift (H), parameterized following with the

specification of the delay (3A). Table 1 unites short reference

descriptions of them.

The sense of operators becomes quite clear after looking at

Fig1-6.

The operators: <. << and <> expressed ‘soft’ bindings

where times of processes’ begins and ends may vary in some

intervals.

Special operator <l> means logical incompatibility of

actions, i.e. the processes cannot be found in the same case of

execution. This is means that the same logical variable has

value 1 in one vector, and 0 in another.

These formal calculi are strong associated with algebraic

models or real-time control algorithms [6].

Fig. 6. Parameterized overlap

Fig. 5. Parameterized following

Fig. 4. Strict precedence

Fig. 3. Direct following

Fig. 2. Coincidence ‘end-end’ CK

Fig. 1. Coincidence ‘begin-begin’ CH

 Sozopol, Bulgaria, June 28-30, 2018

40

TABLE I OPERATORS OF RTCL

Name Mean Signature

СН ‘begin-begin’ (UA1, UA2) → UA

СК ‘end-end’ (UA1, UA2) → UA

→ direct following (UA1, UA2) → UA

Н parameterized

overlay

(UA1, UA2, int) → UA

ЗА parameterized

following
(UA1, UA2, int) → UA

@ absolute time binding (UA, integer) → UA

 qualification by

logical condition

(condition, UA) → UA

In some cases (due to values of involved variables, and

specification to be checked) specification can be feasible with

certain parameters of functional processes, but unfeasible with

other parameters. The reader can found more detailed

description in [7].

Example 1. For the following synchronization

requirements: f1 СН f2 ; f1 → f3 ; f4 СК f5 ; f3 → f4 ; f2→f5, and

parameters’ values 1 = 20, 2 = 100, 3 = 200, 4 = 10, 5 =

50, the specification is not feasible due to violation of f2→f5

requirement (this fact is obvious when we look at Fig. 7).

But if we have the another parameters, for example, 1 = 100,

2 = 150, 3 = 70, 4 = 10, 5 = 50, specification becomes

feasible (see Figure 8).

The very important point is that this model can be applied

not only for real-time spacecraft’s flight control software

(domain where it was initially developed), but for

representation of any sort of activity/processes performed by

human, robots, various mechanisms, etc. In other words, the

presented model is invariant to nature of performer. But at the

same time, the model has enough expressive power for

adequate representing of Real-Time control logic’s complex

features in ‘time space’ and ‘logical space’.

B. Ways of utilization of SMT solvers functionality

It is not a wonder that the fundamental mathematical

objects such as integers, rational and real numbers, vectors,

and matrix are supported by existing SMT solvers by

default. Consequently, if we will know how we can

transform requirements applicable to control logic into

requirements applicable to mentioned objects, then we have

possibility to utilize functionality of available SMT solvers.

To do this, we use the following transition from relations

between functional processes described as formulas of

RTCL, to equations and inequalities on numbers.

TABLE II

ASSOCIATIONS BETWEEN THE CONTROL LOGIC REQUIREMENTS AND

INEQUALITIES AND EQUATIONS WITH NUMBERS

RTCL

formulae

requires comment

fi СН fj ti = tj equation of numbers

fi СК fj ti + i = tj +j equation of numbers

fi fj ti + i = tj equation of numbers

ЗA(fi, fj,) ti + i + = tj equation of numbers

H(fi, fj,) ti + = tj equation of numbers

fi < fj ti < tj inequality of numbers

fi << f ti + i < tj inequality of numbers

fi <> fj ti + i < tj V tj + j

< ti
disjunction of inequalities

fi <l> fj set of boolean

equations

logical incompatibilities

of FPs (see above)

C. SMT based Software Tool Prototype

Some of free SMT solvers provide API for calling them

from user software. Some of them, for instance, Z3, accessible

through Internet, the user can online specify required or

unwanted properties using smt-lib language. Using this

opportunity, we tried to apply functionality provided by SMT

solver, for control logic checking. For this purpose, the

software tool prototype was developed. Using the prototype,

we have successfully validated prospectiveness of this

approach.

Fig. 6. Example of feasibility checking

Fig. 5. Example of feasibility checking

 Sozopol, Bulgaria, June 28-30, 2018

41

Example 2. The software prototype coded in Java 8, it has

intuitively understandable ease user interface. The screenshot

is presented in Fig. 3 (interface uses Russian).

First, user sets values of model variables in corresponding

input fields. Then he needs step-by-step input specification to

be verified. For this purpose, graphical user interface elements

allow choosing operations of RTCAL logic. Transformation

of specification represented in this from, into SMT solver smt-

lib language, is being performed automatically. There are also

buttons for trying to evaluate of feasibility, saving and loading

of given specification, etc. The result from Z3 in form ‘sat’ or

‘unsat’ is decoded, and if the specification is feasible,

parameters’ values are shown in special window.

D. Utilization of Logic Programming

Follow the monograph [4], let us try to analyze possibility

of application of logic programming system’s power for our

purposes. It is well known that, for example, Prolog logic

programming system is equipped with internal logical

inference machine. Moreover during looking for answers to

user specified questions, Prolog automatically finds values

making answer positive (if inference machine system cannot

found appropriate values, it returns answer ‘No’).

This feature provides us with a chance to use Real-Time

Control Logic formalism in couple with logic programming

system similarly we did it with SMT solvers. The operators of

RTCL formulas have to be transformed into Prolog language

predicates. The semantics of RTCL can be simply introduced

in Prolog terms due to ease using of lists which are main data

structure in Prolog language. It is convenient for us due the

semantics of RTCAL is formed by tuples which can be

reviewed as some equivalent to lists. The logical vector, due

to its nature, can be simply represented by list as well. So, we

can integrate the specially developed Prolog pre-built program

module with specification to be verified, also presented in

Prolog language. Then we specify the parameters of basic

functional processes of control algorithm, using Prolog

language. Doing this, we use variables for unknown

parameters. After that, we formulate question (goal) for

Prolog system, and get the answer, including values of

unknown parameters allowing specification to be feasible.

Example 2.

 with Prolog input

СК(f5,f3).

СК(f4,f3).

begin_time(f5,10).

duration(f3,50).

duration(f5,90).

and goal ?СК(f3,X), user gets the answer ‘Yes’ and values

X=f3, X=f5, X=f4, with the goal ?begin_time(f3,X). user gets

‘Yes, X=50’.

III. CONCLUSION

We have shown how the algebraic and logical based models

of real-time control logic can be applied for feasibility

checking using Satisfiability Modulo Theories solvers. The

Real Time Control Logic presented in the paper, is a product

of evolution of ideas formulated by A.A. Kalentyev in his

early formal calculus of control algorithms, and algebra of

real-time control algorithms. The proposed approach uses

transformation of formal specification represented in terms of

RTCL formulas, into equations and inequalities with integers.

Then we convert them in SMT solver compatible smt-lib

language. The paper presents prototype of software tool

supporting the approach and based on calling Z3 SMT solver

through its application programming interface.

ACKNOWLEDGEMENT

Author wants to gratefully acknowledge Professor Anatoly

Kalentyev who introduced him into world of science and

particular area of space technologies and who found basis of

Real Time Control Algorithm’s Logic.

REFERENCES

[1] W. Ashby, Introduction to Cybernetics, – New York, Chapman

& Hall, 1956.

[2] R.N. Akhmetov, V.P. Makarov, A.V. Sollogub, “Principles of

the Earth Observation Satellites Control in Contingencies“,

Information and Control Systems, vol. 1, pp 16-22, 2012.

[3] A.A. Tyugashev, “Integrated environment for designing real-

time control algorithms“, Journal of Computer and Systems

Sciences international, vol. 2(45), pp. 287-300, 2006.

[4] A.A. Kalentyev, A.A. Tiugashev, Application of CALS

technologies in Lifecycle of Complex Control Software, Samara,

Samara Centre of RAS Publishing, 2006 (in Russian).

[5] A. Tyugashev, I. Ilyin, I. Ermakov, “Ways to improve quality

and reliability of software in aerospace industry“, Large-Scale

Systems Control, pp. 288–299, vol. 39, 2012. (in Russian).

[6] A. Tyugashev, "Use of graph-based and algebraic models in

lifecycle of real-time flight control software", Proceedings of

Mathematical Modeling Session at the International Conference

Information Technology and Nanotechnology (MM-ITNT

2017) pp 306-311, Samara, Russia, 19.11.2017.

[7] A. Tiugashev, "Build and evaluation of real-time control

algorithms in case of incomplete information about functional

processes' parameters", Proceedings of 2017 XX IEEE

International Conference on Soft Computing and Measurements

(SCM’2017), pp. 179-185, Saint Petersburg, Russia, 2017.

Fig..7. Screenshot of developed software tool prototype

