
 Sozopol, Bulgaria, June 28-30, 2018

322

Graph-Based Neural Network for Handwritten Digit

Recognition
Ivaylo Penev1 and Milena Karova2

Abstract – The paper presents building and training of a

neural network for handwritten digit recognition. As opposed to

the known solutions this work uses computation graphs for

building, training and estimating the neural network. This

approach has two main advantages: reduces the time for

network building and training and achieves relative

independence of the constructed network model from the

runtime environment. The forming of the computation graphs at

each step of the neural network building, training and estimating

is described. The results from experimental tests with standard

data patterns for handwritten digits are discussed.

Keywords – Machine learning, Neural networks, Computation

graphs, Classification, Recognition, Parallel calculation.

I. INTRODUCTION

Handwritten digit recognition is a famous problem with

multiple applications in theory and practice. It is a

classification problem, where the input data (images of

handwritten digits) are classified to one of a set of classes

(digits from 0 to 9).

Neural networks (NN) are classical method for recognition

and classification. Many solutions of NN for handwritten digit

recognition have been proposed. Many of them achieve

accuracy of more than 99.7% (i.e. the error is lower than

0.3%) (e.g. [3], [4], [5]), but the following main disadvantages

could be pointed out in them:

- The NN model is complex and therefore hard for

scaling;

- The NN model is dependent of the implementation

tools (libraries, frameworks);

- The NN training requires much time.

The NN building and training typically consists of lots of

independent calculation operations. The natural approach for

NN building and training is using parallel calculations via the

available computing devices in many systems - multicore

central processing units (CPUs) and graphic processors

(GPUs). In some literature sources solutions, using GPU are

proposed (e.g. [1], [2]). Other sources present the application

of the MapReduce method for NN training (e.g. [7]).

Although the published results are very good, the

implementation is still specific to platforms and libraries. For

example the implementation of a NN for a system CPU and

GPU needs serious modification for a system with multicore

CPU but without GPU support.

Recently have been developed tools (programming

frameworks and runtime environments), which allow the

building and training process of NN to be presented by

computation graphs. In graph nodes are placed calculation

operations, in the arcs are the data for the operations. The

main goals are two - possibility for automatic distribution of

the graph between different devices of the computing system

and achieving of relative independence of the NN model from

the runtime environment (architecture, programming

languages and frameworks). Some of the popular frameworks,

providing computation graphs, are Theano, Torch. In the last

two years has grown the usage of TensorFlow, developed by

Google [6].

The present paper describes NN for recognition of

handwritten digits from 0 to 9. Building, training and

estimating the network are implemented as computation

graphs, suitable for parallel execution by different devices.

Results from experimental tests of the trained network in a

machine learning framework, providing computation graphs

and parallel execution of the graphs, are discussed.

II. NEURAL NETWORK BUILDING AND

TRAINING BY COMPUTATION

GRAPHS

A simplified model of a computation graph is shown on

Fig. 1. The operations are placed in the nodes and their

operands (sets of calculation values) are placed in the arcs.

The framework and runtime environment divide the graph

into subgraphs and submit each subgraph to a device of the

system.

Fig. 1. Simple computation graph, divided into subgraphs

1Ivaylo Penev is with the Faculty of Computer Sciences and

Automation at Technical University of Varna, 1 Studentska str.

Varna 9010, Bulgaria, E-mail: ivailo.penev@tu-sofia.bg.
2Milena Karova is with the Faculty of Computer Sciences and

Automation at Technical University of Varna, 1 Studentska str.

Varna 9010, Bulgaria, E-mail: mkarova@ieee.bg.

 Sozopol, Bulgaria, June 28-30, 2018

323

A. Presentation of the input data

For training and testing the NN data sets from the MNIST

data base with patterns of handwritten digits are used [8]. A

digit image is presented as a two-dimensional matrix. The

algorithm processes the digit as a set of 0s and 1s (Fig. 2)

The two-dimensional array is converted to a vector, thus

constructing the digit working set, suitable for algorithmic

processing:

digit = {x1 x2 … xn}, where xi = {0,1}, 1 - available pixel

in the digit image, 0 - not available pixel in the digit image.

=>

Fig. 2. Presentation of an example digit from MNIST

B. Structure of the neural network

For building the NN model logarithmic softmax regression

is used. The process follows the next two steps:

1. Calculation of digit distance to a definite class

The distance is a numeric value, estimating the similarity of

a digit with a definite class (from 0 to 9). This value is

calculated by a weighted sum of the intensities of the input

digit image pixels. If a pixel has high intensity, which does

not belong to a definite class, then the pixel weight is

negative. Otherwise the pixel weight is positive.

For a class i the distance value is calculated as follows:

𝐻𝑦 ′ = − 𝑦𝑖
′

𝑖

log⁡(𝑦𝑖)

(1)

where
Wi - digit weights for a class i

bi - biases of the digit for the class i

j – index for all pixels weights of digit x.

2. Calculation of probability for belonging of the digit to

a definite class

The distance value (Eq. 1) is used for calculation of the

probability, showing how likely is the jth digit from the

training data set to belong to a class i from 0 to 9. The softmax

function is used (Eq. 2):

𝐻𝑦 ′ = − 𝑦𝑖
′

𝑖

log⁡(𝑦𝑖)

 (2)

The model of the neural network is constructed (Fig. 3).

Fig. 3. NN structure for handwritten digit recognition

The multiplication of the sets W and x consists of a lot of

independent calculations for each data item from the training

data set. These calculations could be performed in parallel.

The computation graph of the NN model includes the

possibilities for parallel calculation of W and x multiplication

(Fig. 4).

Fig. 4. Computation graph of the NN building

C. Training of the neural network

For estimating the classification error cross-entropy

function is used. For each digit from the training data set the

error 𝐻𝑦′ is calculated (Eq. 3)

𝐻𝑦 ′ = − 𝑦𝑖
′

𝑖

log⁡(𝑦𝑖)

 (3)
where

𝑦𝑖 - the calculated probability for digit to belong to class i,

 Sozopol, Bulgaria, June 28-30, 2018

324

𝑦′ - the true class label of the digit, known from the training

data set.

The NN training is performed by backpropagation and

stochastic gradient descent algorithms. The purpose is finding

the minimum of the 𝐻𝑦′ error by iteratively changing the

values of the weighted parameters W.

The cross-entropy function consists of a set of independent

calculations, which could be performed in parallel. At this

step of the NN training a new vertex to the computation graph

is added (Fig. 5).

Fig. 5. Computation graph for the NN training

D. Estimation of the neural network accuracy

The accuracy is estimated using the training data sets. Each

predicted value y is compared to the corresponding class label

y’ from the training data set. The result from the comparison

is a set of values 1 (TRUE) if y is equal to y’ and 0 (FALSE)

otherwise. The average value of the equalities is finally

determined as
∑ (𝑦==𝑦′)𝑗

𝑗
 for each jth item of the training data

set.

For example the result [1 0 1 1] -> [TRUE FALSE TRUE

TRUE] means accuracy of 0.75, i.e. 75%.

A new vertex for the accuracy estimation is added to the

computation graph (Fig. 6).

Fig. 6. Computation graph for NN accuracy estimation

III. EXPERIMENTAL RESULTS

A. Framework for the tests

The process of building, training and estimating the NN,

described in the previous sections, is implemented by the

TensorFlow framework, which provides Python-based

programming tools and runtime environment for machine

learning problems. The calculation operations and the data

values for them (called tensors) are presented as computation

graphs. The runtime environment automatically distributes the

graphs to the devices of the system (CPU cores, GPU).

The experiments are performed on two computing systems

- computer 1 (with GPU support) and computer 2 (without

GPU support).

The TechPowerUp GPU-Z application is used for

measuring the video card work in real time. The system

parameters are monitored by the Windows task manager.

B. Measuring the NN training time

For measuring the NN training two parameters are used:

number of iterations – how many iterations are performed

in the gradient descent algorithm for minimizing the error

function;

batch size - number of data sets from MNIST, processed at

each iteration of the gradient descent.

The data size for each test is determined as 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∗ 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒. For example a test with

500 iterations and 50 MNIST input digits is performed by data

size of 500 * 50 = 25000.

Fig. 7. Training time with 500 iterations and 50 batch size

The results show, that the NN training on a system with

CPU and GPU reduces significantly the training time - about

8-10 times in comparison to a system with CPU only (Fig. 7).

When increasing the values of the test parameter values the

difference between the times decreases, but the distributed

computation graph is still calculated 6-8 times faster than the

same graph on a CPU only (Fig. 8).

0,0

50,0

100,0

150,0

0 100000 200000 300000

Tr
ai

n
in

g
ti

m
e

, s
e

c.

Data size

GPU support

0,0

500,0

1000,0

1500,0

0 100000 200000 300000

Tr
ai

n
in

g
ti

m
e

, s
e

c.

Data size

No GPU support

 Sozopol, Bulgaria, June 28-30, 2018

325

Fig. 8. Training time with 5000 iterations and 250 batch

size

C. Measuring the NN training accuracy

The best training accuracy achieved is 99.5% (Fig. 9). This

result is close to the best known results for handwritten digit

recognition by NN. For example in [1] an accuracy of 99.65%

is reported (i.e. error 0.35%), but the NN network is more

complex with multiple hidden layers and is performed on a

system with many video cards - precondition, which is not

available in massive computer systems

Fig. 9. Training accuracy with 8000 iterations and 500

batch size

IV. CONCLUSION

The following conclusions could be derived from the

presented results:

- The building and training of neural network could be

significantly accelerated by the usage of proper computation

graphs, performed on systems with GPU;

- The presented approach could be used for other

problems, because the process of NN building and training

typically includes the same (or very similar) steps;

- NN, presented by computation graphs, could be

adapted for implementation on other frameworks and

environments, which provide distribution of the graphs to

different system devices (e.g. frameworks as Theano or

Torch).

The future work will be directed to application of

computation graphs for various problems by other machine

learning algorithms (e.g. kNN, SVM, etc.), where lots of

independent calculation operations are typically performed.

REFERENCES

[1] D. Ciresan, Meier, U., Gambardella, L., Schmidhuber, J.

Deep Big Simple Neural Nets Excel on Handwritten Digit

Recognition, Neural Computation, Vol. 22, MIT, USA, 2010.

[2] D. Cireşan, Meier, U., Schmidhuber, J. Multi-column

Deep Neural Networks for Image Classification, Computer

Vision and Pattern Recognition (CVPR), 2012 IEEE

Conference, DOI: 10.1109/CVPR.2012.6248110, IEEE, 2012.

[3] I. Sato, Nishimura, H., Yokoi, K. APAC: Augmented

Pattern Classification with Neural Networks,

https://arxiv.org/abs/1505.03229, 2015.

[4] J.-R. Chang, Chen Y.-S. Batch-normalized Maxout

Network in Network, https://arxiv.org/abs/1511.02583, 2015.

[5] L. Chen-Yu, Gallagher, P., Zhuowen, T. Generalizing

Pooling Functions in Convolutional Neural Networks: Mixed,

Gated, and Tree, https://arxiv.org/abs/1509.08985, 2015.

[6] M. Abadi, Agarwal A., et. al. TensorFlow: Large-Scale

Machine Learning on Heterogeneous Distributed Systems,

arXiv:1603.04467v2, 2016.

[7] N. Basit, Zhang Y., Wu H., Liu H., Bin J., He Y.,

Hendawi A. MapReduce-based deep learning with

handwritten digit recognition case study, Big Data (Big Data),

2016 IEEE International Conference, DOI:

10.1109/BigData.2016.7840783, IEEE, 2016.

[8] http://yann.lecun.com/exdb/mnist/

0,0

500,0

1000,0

1500,0

0 1000000 2000000 3000000

Tr
ai

n
in

g
ti

m
e

, s
e

c.

Data size

GPU support

0,0

5000,0

10000,0

0 1000000 2000000 3000000

Tr
ai

n
in

g
ti

m
e

, s
e

c.

Data size

No GPU support

97,0

98,0

99,0

100,0

0 2000000 4000000 6000000

A
cc

u
ra

cy
, %

Брой данни

GPU support

97,0

98,0

99,0

100,0

0 2000000 4000000 6000000

A
cc

u
ra

cy
, %

Брой данни

No GPU support

