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Abstract – The paper presents building and training of a 

neural network for handwritten digit recognition. As opposed to 

the known solutions this work uses computation graphs for 

building, training and estimating the neural network. This 

approach has two main advantages: reduces the time for 

network building and training and achieves relative 

independence of the constructed network model from the 

runtime environment. The forming of the computation graphs at 

each step of the neural network building, training and estimating 

is described. The results from experimental tests with standard 

data patterns for handwritten digits are discussed. 
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I. INTRODUCTION 

Handwritten digit recognition is a famous problem with 

multiple applications in theory and practice. It is a 

classification problem, where the input data (images of 

handwritten digits) are classified to one of a set of classes 

(digits from 0 to 9). 

Neural networks (NN) are classical method for recognition 

and classification. Many solutions of NN for handwritten digit 

recognition have been proposed. Many of them achieve 

accuracy of more than 99.7% (i.e. the error is lower than 

0.3%) (e.g. [3], [4], [5]), but the following main disadvantages 

could be pointed out in them: 

- The NN model is complex and therefore hard for 

scaling; 

- The NN model is dependent of the implementation 

tools (libraries, frameworks); 

- The NN training requires much time. 

The NN building and training typically consists of lots of 

independent calculation operations. The natural approach for 

NN building and training is using parallel calculations via the 

available computing devices in many systems - multicore 

central processing units (CPUs) and graphic processors 

(GPUs). In some literature sources solutions, using GPU are 

proposed (e.g. [1], [2]). Other sources present the application 

of the MapReduce method for NN training (e.g. [7]). 

Although the published results are very good, the 

implementation is still specific to platforms and libraries. For 

example the implementation of a NN for a system CPU and 

GPU needs serious modification for a system with multicore 

CPU but without GPU support. 

Recently have been developed tools (programming 

frameworks and runtime environments), which allow the 

building and training process of NN to be presented by 

computation graphs. In graph nodes are placed calculation 

operations, in the arcs are the data for the operations. The 

main goals are two - possibility for automatic distribution of 

the graph between different devices of the computing system 

and achieving of relative independence of the NN model from 

the runtime environment (architecture, programming 

languages and frameworks). Some of the popular frameworks, 

providing computation graphs, are Theano, Torch. In the last 

two years has grown the usage of TensorFlow, developed by 

Google [6]. 

The present paper describes NN for recognition of 

handwritten digits from 0 to 9. Building, training and 

estimating the network are implemented as computation 

graphs, suitable for parallel execution by different devices. 

Results from experimental tests of the trained network in a 

machine learning framework, providing computation graphs 

and parallel execution of the graphs, are discussed. 

II. NEURAL NETWORK BUILDING AND 

TRAINING BY COMPUTATION 

GRAPHS 

A simplified model of a computation graph is shown on 

Fig. 1. The operations are placed in the nodes and their 

operands (sets of calculation values) are placed in the arcs. 

The framework and runtime environment divide the graph 

into subgraphs and submit each subgraph to a device of the 

system. 

 

 

Fig. 1. Simple computation graph, divided into subgraphs 
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A. Presentation of the input data 

For training and testing the NN data sets from the MNIST 

data base with patterns of handwritten digits are used [8]. A 

digit image is presented as a two-dimensional matrix. The 

algorithm processes the digit as a set of 0s and 1s (Fig. 2) 

The two-dimensional array is converted to a vector, thus 

constructing the digit working set, suitable for algorithmic 

processing: 

digit = {x1 x2 … xn}, where xi = {0,1}, 1 - available pixel 

in the digit image, 0 - not available pixel in the digit image. 

 

 

 

 

 

 

=> 
 

 

 

 

 
Fig. 2. Presentation of an example digit from MNIST 

 
B. Structure of the neural network 

For building the NN model logarithmic softmax regression 

is used. The process follows the next two steps: 

 
1. Calculation of digit distance to a definite class 

The distance is a numeric value, estimating the similarity of 

a digit with a definite class (from 0 to 9). This value is 

calculated by a weighted sum of the intensities of the input 

digit image pixels. If a pixel has high intensity, which does 

not belong to a definite class, then the pixel weight is 

negative. Otherwise the pixel weight is positive. 

For a class i the distance value is calculated as follows: 

𝐻𝑦 ′ = − 𝑦𝑖
′

𝑖

log⁡(𝑦𝑖) 

(1) 

where 
Wi - digit weights for a class i 

bi - biases of the digit for the class i 

j – index for all pixels weights of digit x. 

2. Calculation of probability for belonging of the digit to 

a definite class 

The distance value (Eq. 1) is used for calculation of the 

probability, showing how likely is the jth digit from the 

training data set to belong to a class i from 0 to 9. The softmax 

function is used (Eq. 2): 

 

𝐻𝑦 ′ = − 𝑦𝑖
′

𝑖

log⁡(𝑦𝑖) 

  (2) 

 

The model of the neural network is constructed (Fig. 3). 

 

 

 
Fig. 3. NN structure for handwritten digit recognition 

 

The multiplication of the sets W and x consists of a lot of 

independent calculations for each data item from the training 

data set. These calculations could be performed in parallel. 

The computation graph of the NN model includes the 

possibilities for parallel calculation of W and x multiplication 

(Fig. 4). 

 
Fig. 4. Computation graph of the NN building 

 
C. Training of the neural network 

For estimating the classification error cross-entropy 

function is used. For each digit from the training data set the 

error 𝐻𝑦′  is calculated (Eq. 3) 

 

𝐻𝑦 ′ = − 𝑦𝑖
′

𝑖

log⁡(𝑦𝑖) 

  (3) 
where  

𝑦𝑖 - the calculated probability for digit to belong to class i, 
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𝑦′ - the true class label of the digit, known from the training 

data set. 

 

The NN training is performed by backpropagation and 

stochastic gradient descent algorithms. The purpose is finding 

the minimum of the 𝐻𝑦′ error by iteratively changing the 

values of the weighted parameters W. 

The cross-entropy function consists of a set of independent 

calculations, which could be performed in parallel. At this 

step of the NN training a new vertex to the computation graph 

is added (Fig. 5). 

 

 

 
Fig. 5. Computation graph for the NN training 

 

D. Estimation of the neural network accuracy 

The accuracy is estimated using the training data sets. Each 

predicted value y is compared to the corresponding class label 

y’ from the training data set. The result from the comparison 

is a set of values 1 (TRUE) if y is equal to y’ and 0 (FALSE) 

otherwise. The average value of the equalities is finally 

determined as 
∑ (𝑦==𝑦′)𝑗

𝑗
 for each jth item of the training data 

set. 

For example the result [1 0 1 1] -> [TRUE FALSE TRUE 

TRUE] means accuracy of 0.75, i.e. 75%. 

A new vertex for the accuracy estimation is added to the 

computation graph (Fig. 6). 

 

 
Fig. 6. Computation graph for NN accuracy estimation 

 

III. EXPERIMENTAL RESULTS 

A. Framework for the tests 

The process of building, training and estimating the NN, 

described in the previous sections, is implemented by the 

TensorFlow framework, which provides Python-based 

programming tools and runtime environment for machine 

learning problems. The calculation operations and the data 

values for them (called tensors) are presented as computation 

graphs. The runtime environment automatically distributes the 

graphs to the devices of the system (CPU cores, GPU). 

The experiments are performed on two computing systems 

- computer 1 (with GPU support) and computer 2 (without 

GPU support). 

The TechPowerUp GPU-Z application is used for 

measuring the video card work in real time. The system 

parameters are monitored by the Windows task manager. 

 

B. Measuring the NN training time 

For measuring the NN training two parameters are used: 

number of iterations – how many iterations are performed 

in the gradient descent algorithm for minimizing the error 

function; 

batch size - number of data sets from MNIST, processed at 

each iteration of the gradient descent. 

The data size for each test is determined as 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∗ 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒. For example a test with 

500 iterations and 50 MNIST input digits is performed by data 

size of 500 * 50 = 25000. 

 

 
 

 
Fig. 7. Training time with 500 iterations and 50 batch size 

 

The results show, that the NN training on a system with 

CPU and GPU reduces significantly the training time - about 

8-10 times in comparison to a system with CPU only (Fig. 7). 

When increasing the values of the test parameter values the 

difference between the times decreases, but the distributed 

computation graph is still calculated 6-8 times faster than the 

same graph on a CPU only (Fig. 8). 
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Fig. 8. Training time with 5000 iterations and 250 batch 

size 

 

C. Measuring the NN training accuracy 

The best training accuracy achieved is 99.5% (Fig. 9). This 

result is close to the best known results for handwritten digit 

recognition by NN. For example in [1] an accuracy of 99.65% 

is reported (i.e. error 0.35%), but the NN network is more 

complex with multiple hidden layers and is performed on a 

system with many video cards - precondition, which is not 

available in massive computer systems 

 

 
 

 
Fig. 9. Training accuracy with 8000 iterations and 500 

batch size 

 

IV. CONCLUSION 

The following conclusions could be derived from the 

presented results: 

- The building and training of neural network could be 

significantly accelerated by the usage of proper computation 

graphs, performed on systems with GPU; 

- The presented approach could be used for other 

problems, because the process of NN building and training 

typically includes the same (or very similar) steps; 

- NN, presented by computation graphs, could be 

adapted for implementation on other frameworks and 

environments, which provide distribution of the graphs to 

different system devices (e.g. frameworks as Theano or 

Torch). 

The future work will be directed to application of 

computation graphs for various problems by other machine 

learning algorithms (e.g. kNN, SVM, etc.), where lots of 

independent calculation operations are typically performed. 
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