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Abstract—There are several competing technologies with po-
tential of replacing our dependence on fossil fuels. Fuel cells or
hydrogen based technologies are one of them. Although the this
technology is sufficiently mature there are still challenges that
hinder its broad applicability. Our focus is on a particular type
of fuel cells, so-called solid-oxide fuel cell (SOFC). Currently, this
type of fuel cells provide the best efficiency (fuel to electricity
conversion). Due to high temperatures of operation, the durability
of SOFCs is affected by thermal stress and material degradation.
We will focus on the current status of this technology, its main
advantages as well as the latest achievements in the field of
prognostics and health management (PHM).

Index Terms—fuel cells, hydrogen, health management

I. INTRODUCTION

Energy security is one of the main pillars of our modern so-

ciety. The projections for the EU energy consumptions foresee

a slight decrease in our energy demand, however oil will retain

its top position in the energy share of the continent. This is

predominantly due to the requirements of the transportation

sector. Since European oil reserves (excluding Russia) are

virtually nonexistent it is of great importance to reduce our

dependance on oil due to two main factors. First there is the

obvious ecological viewpoint that supports Europe’s strong

dedication towards significant reduction in green house gas

emission. Second is from a purely financial standpoint, since

oil imports amount to 15% of the overall imports by the

EU. By analysing the EU energy consumption by sectors

the three most energy demanding segments are transportation,

residential consumers and district heating systems. Addressing

the demands of these segments can significantly decrease our

dependence on imported energy.

Currently we are witnessing a substantial growth in the

installed renewable energy sources predominantly wind farms

and solar power plants. The biggest deficiency of these systems

is the intermittent nature of power generation. Therefore in

order to exploit these power sources in full while in the same

time to satisfy our demand of energy it is required to provide

means of efficient energy storage and energy diistribution

systems.

The distribution gird for electrical energy is very efficient.

It estimated losses are in the range of 5% to 8% [1]. As a

result a lot of effort is put into the development of energy

storage devices that can harness the electrical energy. When

analysing the available technologies the usual metrics involve

two properties: energy density (Wh/kg) and power density

(W/kg). On one side of the scale are batteries and fuel cells,

which have high energy density but low power density. On the

other side are super capacitors with somewhat lower energy

density but quite high power density. Our focus is on how

energy density devices i.e. batteries and fuel cells.

Currently the leading technology in batteries development is

based on Lithium. From a geo-political viewpoint, Europe is in

the same situation as it is with oil. The world’s largest deposits

of this element are in South America and China. Therefore

in long term building our society solely on Lithium based

batteries will make us highly dependent on resources that are

outside of our borders.

Unlike batteries that are energy storage devices, fuel cells

are energy conversion devices. They convert chemical energy

stored in the hydrogen fuel into electrical energy through

electrochemical combination of hydrogen and oxygen. Based

on the hydrogen source, principle of operation and oper-

ating temperature, fuel cell technology distinguishes among

SOFCs [2], low-temperature proton exchange membrane fuel

cells (PEMFCs) [3], high temperature polymer electrolyte

membranes (HT-PEMs) [4], direct methanol fuel cell (DMFC),

sulphuric acid fuel cell (SAFC), molten carbonate fuel cell

(MCFC), solid polymer fuel cell (SPFC), and alkaline fuel

cell (AFC) [5]. Regarding fuel cells there are roughly three

technology groups: low temperature PEM cells, high tem-

perature MCFC and the so-called SOFC. Unlike batteries,

that are capable of storing of electrical energy, fuel cells

use hydrogen as a fuel. Consequently, when analysing the

viability of fuel cell technology (or commonly referred to

as hydrogen technology) vs. batteries there are several points

that on first glance make the fuel cells as wrong choice. Key

among them being production, compression and distribution of

hydrogen. However making a more detailed analysis provide

a completely different story.

The SOFC technology offers very high conversion efficiency

that is close to 60%. Therefore using renewable energy sources

in the time intervals when there is an excess of energy it is

possible to produce a so called green hydrogen with very little

losses.

The second issue, compression, is usually addressed from

2

Ohrid, North Macedonia, 27-29 June 2019



the viewpoint of mechanical compression devices that are

highly inefficient in particular for low density hydrogen.

However, there are currently solutions that are based on the

concepts of electrochemical compression capable of reach-

ing 1000 bars of pressure without any moving components.

Consequently, the compression process can be performed with

efficiency of almost 80%.

The final issue is the transportation. Compared to other parts

of the world, the EU has vast and extremely well developed gas

pipeline system that is currently used for delivery of natural

gas to almost every household on the continent. There are

already examples where hydrogen is used as a supplement to

the existing natural gas. The ultimate goal is to use segments

of the pipeline as a delivery system for hydrogen to the end

users.

This analysis shows that hydrogen based technologies are

viable solution to the issues regarding the energy security.

Even more, the SOFC technology can be built without any

rare earth minerals thus completely rendering our dependence

on foreign materials. In the remaining of the paper we will

present the current state of development of the SOFC based

fuel cells, open issues regarding their exploitation and future

trends.

II. SOFC IN A NUTSHELL

Fuel cels consist of three adjacent layers: (i.) anode,

(ii.) cathode, and (iii.) electrolyte. Fig. 1 displays the basic

principles and essential components of a single SOFC. The

main purpose of the electrolyte is to transport oxygen ions

O2− from the cathode to the anode, while at the same

time preventing direct contact between anode and cathode

chambers. The ions are formed via oxygen reduction reaction

at the cathode, which is continuously fed with oxygen. On the

other side, at the anode, the O2− ions react with hydrogen

in the process of hydrogen oxidation. In addition to H2O,

two electrons and some heat are released. The electrons travel

through the external load to reach the cathode, where they

participate in oxygen reduction reaction. In addition, one of

the major advantages of the SOFC is its ability of internal

reforming of the fuel. This property allows the fuel cells to

operate not only on pure hydrogen, but on also other hydrogen-

rich fuels, such as methane.

Theoretically, the voltage of a single SOFC can reach up

to 1.2 V, depending on temperature, pressure and gas com-

position. The power output, however, is heavily conditioned

with the active area of the fuel cell. Typically, the larger

the active area of the cells, the higher the power output.

However, the limiting factor for the size of the individual

fuel cells is related to the thermo-mechanical stress induced

due to thermal expansion coefficient (TEC) mismatch of the

adjacent layers. With larger cells, temperature gradients over

the cells become larger, thus causing higher stress on the

materials, hence compromising their safe operation. Therefore,

to increase power output, a number of fuel cells is connected

in parallel to form a fuel cell stack.

H2 +O2− → H2O + 2e−

CathodeAnode
Electrolyte

Load

H2

H2, H2O

O2

O2

O2−

2e−

1
2O2 + 2e− →O2−1
2O2 + 2e− →O2−

Fig. 1: The basic principles of a SOFC and its essential

components.

Since the SOFCs operate at high temperatures, the stack is

usually enclosed in an insulated housing to reduce heat losses.

The stack then connects with a balance of plant (BOP) module,

which carries out the pre-treatment of the incoming gases.

Depending on the scale of the installation, the BOP consists of

different interconnected components, such as heat-exchangers,

blowers, fuel reformers, pipes, valves, etc.

III. PHM IN FUEL CELLS

The degradation occurring within the fuel cells inherently

impedes the efficiency of power conversion. Apart from the

fact a great deal of effort has been dedicated to the understand-

ing of SOFC degradation mechanisms [6], only a relatively

limited set of diagnostic approaches is available.

The PHM can be defined as a set of activities in which

the main perspective is to enhance the effective reliability and

availability of a product in its life-cycle conditions by detection

of current and approaching failures [7].

Fig. 2: PHM structure from [8]

Figure 2 shows basic self-contained building blocks of

an PHM system, divided in seven layers. On the lower levels

L1 the data is collected employing sensors and transducers. In

the data processing level, features that carry information about

the condition of an underlying system are extracted from the

collected data. Further up, in the condition assessment layer,

the features are evaluated in a sense that any deviation from
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the normal operation is detected. If changes in the behaviour

are detected, then the fault alarms are triggered. In the next

stage, in the diagnostic layer, the patter of the triggered alarms

are compared with known failure modes to possibly identify

the cause of the triggered alarms. Having identified the faulty

component, the prognostics layer aims to predict how the

component in question will operate in future based on the

historic data from the previous layers.

Within this framework, several passive fault detection and

identification (FDI) approaches have been proposed to con-

stantly monitor components that supply and pre-treat fuel

before entering the reaction chambers of the fuel cells. That

encompasses several analytical model-based approaches [9],

[10], black-box approaches [11] and signal processing ap-

proaches [12]. However, yet the most predominate approaches

to health assessment build on the use of electrochemical

impedance spectroscopy (EIS). Characteristic for EIS is that

applies local probing directly on the fuel cells in order to

excite all the relevant dynamic modes related to chemical

processes in the system to gain more detailed information

about condition of the cells themselves. Although it has been

around for several decades, the way it is used has not changed

much.

Conventional EIS techniques use low-amplitude sinusoidal

excitation, repeatedly performed at different frequencies, from

which then the gain and phase of the points on the Nyquist

curve are estimated. Such an approach suffers from too long

probing time that is usually required to obtain high-quality

EIS spectra. That means too long perturbation of the process in

operating mode. Particularly critical is estimation of EIS curve

at low frequencies as normally several periods of a sinusoid

are required to extract precise information.

By applying excitation over a wide range of frequencies

simultaneously, the authors in [13] showed that the same

quality of the results as in conventional EIS can be obtained at

the substantially shorter probing times (an order of magnitude).

The evaluation of EIS curve is done by post-processing of

the current and voltage signals by means of complex wavelet

transform. Apart of the much shorter probing session, addi-

tional benefit is also much better resolution of the EIS curve

obtained compared to the conventional EIS, as it is defined

by the sampling rate. Savings in required probing times can

gradually diminish when the required precision of the spectral

reconstruction at low frequencies is increasing.

The measured EIS data can then be further processed to

extract relevant information about the health status. Here,

several approaches serve as tools the EIS data have to be

interpreted either through the change of the pattern of the

EIS curve, or by interpreting changes in the parameters of the

equivalent circuit models (ECM) [14], [15] and distribution of

relaxation timess (DRTs) [16].

A. Data acquisition

A block scheme of the data acquisition system consisting

of several interconnected components is shown in Fig. 3. It

includes programmable digital load, data acquisition device, a

current probe, and controlling unit that connects the function-

ality of all the components.

Electronic
load

1 2 3 4 5 6

+ -

I

CH1 CH2CH3 CH4CH5 CH6 CH7

Current
Probe

CH1 CH2CH3 CH4CH5 CH6 CH7

Analog lowpass filter

Data acquisition card

Controling
Monitoring
Diagnostics

unit

USB

Ethernet

Internet

Fig. 3: Block scheme of the system for impedance character-

isation of electrochemical energy devices

An electronic load is connected directly in series with the

SOFC and is used to set DC current as well as to superimpose

various excitation signals. This way, the current in the system

is controlled by the load, and defined by the system operator. In

more industrial circumstances, the electronic load can be also

replaced by incorporating its functionality in power condition-

ing unit which is then connected to the electric grid. However,

by doing so, one needs to keep in mind the limitations of

connected power electronics when designing the excitation

signals. The electrical current is measured using a non-invasive

current probe which offers sufficiently high bandwidth and

does not disturb the functionality of the system. The data

acquisition hardware allows for individual cell voltages and

the output of the current probe to be measured simultaneously.

This way individual cells can be monitored at the same time

and allow for more accurate isolation of the possibly faulty

cell. Figure 4 show an excerpt from the data collected during

one probing.

Fig. 4: An example of the data collected on a single SOFC.

The electronic load and the data acquisition hardware are

connected to a computer that orchestrates the probing. First

the electronic load is triggered to superimpose the excitation

signals to the system while the the response from the cells and

current probe are logged. Furthermore, the computer allows

to design a schedule of experimental probing to facilitate

automated and regular experiments. If needed the computer

can also be used to process the data on sight, or send it to the

cloud.
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B. Data processing and feature extraction

The conventional frequency domain signal analysis per-

formed with the Fourier transform, provides a detailed picture

of the frequency components present in the signal but without

any information regarding their time occurrence and duration.

Time-frequency analysis offers a solution to this problem

thus providing the information about the temporal details as

well. Typical examples are the Short-time Fourier transform,

Wigner-Ville distribution, wavelet transform etc.

Regardless of the selected method there is a theoretical

limitation on the joined time-frequency resolution. Unlike

other methods, the wavelet transform enables flexible selection

of the desired time-frequency resolution by introducing the

concepts of scaling. Wavelet transform is based on a set of

specifically designed functions called wavelets. The continu-

ous wavelet transform (CWT) of a square integrable function

f(t) is defined [17]

Wf (s, u) =

∫ ∞

−∞
f(t)Ψ∗

u,s(t)dt (1)

where wavelet function Ψ∗
u,s(t) is scaled by s and translated

by u version of original mother wavelet Ψ(t):

Ψ∗
u,s(t) =

1

s
Ψ(

t− u

s
) (2)

The key parameter in CWT is the selection of the wavelet

function. EIS analysis requires information about the ampli-

tude and phase of the excitation and response signals, therover

a complex Morlet wavelet function is readily available [18]:

The time and frequency localisation is determined through the

parameters u and s respectively. More details regarding the

properties of the Morlet wavelet and the application of CWT

for EIS analysis can be found in [13].
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Fig. 5: An example of a Nyquist curve of a single SOFC.

The voltage/current signal pairs from Fig. 4 are transformed

employing (1), devided and averaged over time to obtain

Nyquist curve show in Fig. 5.
1) Feature extraction: Observing changes in Nyquist

curves can be directly employed for detecting a change in

a system and condition monitoring. However, a more con-

cise information is required to facilitate the identification of

degradation mechanism. This can be achieved by modeling the

measured Nyquist curve in one way or another and is often

referred to as deconvolution of the EIS spectra.

Generally speaking, there are two approaches to deconvolu-

tion of the EIS spectra: (i.) ECM modeling through non-linear

optimisation (ii.) non-parametric identification of the Nyquist

curve through DRT [19]. From mathematical point of view the

above approaches are equivalent. That is, having one of the

two, one can easily derive the other one [20].

An ECM of fuel cell impedance can be described as a series

of RQ elements connected in series, as shown in Fig. 6. It has

R0

R1

Q1

R2

Q2

· · ·
· · ·

Rk

Qk

Fig. 6: General form of the ECM using RQ-elements

been shown that the degradation phenomena manifest in the

changes of the parameters of the ECM. Indirect observations

through DRT have recently been published [21]. Therefore, the

parameters of the ECM can be employed to identify ongoing

degradation mechanism.

There are several ways to estimate the parameters of any

model. For instance, having a fuel cell impedance model

structure

Z(jω) = Rs +
∑
i

Ri

τi(jω)αi + 1
(3)

one can formulate an optimisation problem

argmin
θ

c(θ)

where c(θ) denotes a loss function which describes goodness
of fit of the model with respect to measured Nyquist curve, and

the θ is a vector of model parameters. Following this approach

one obtains a point estimate of parameter values.

In order to obtain richer insight regarding the accuracy of

the estimates statistical based approaches can be employed.

The main is as follows. Given a model and data D , the

posterior distribution of the model parameters θ can be

estimated via Bayes rule as:

p(θ|D) =
p(D |θ)p(θ)∫
p(D |θ)p(θ)dθ (4)

where p(D |θ) is likelihood, p(θ) is prior, and∫
p(D |θ)p(θ)dθ is called marginal likelihood or model

evidence.

By constructing likelihood function and defining prior prob-

abilities (typically uninformative ones), the posterior of the

model parameters can be inferred employing four different ap-

proached: (i.) analytically in the case of the tractable required

mathematical operations, (ii.) employing numerical integration

techniques (iii.) through Markov chain Monte Carlo (MCMC)

simulations, (iv.) employing variational Bayes approximation.
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Fig. 7: Posterior probability density functions (PDFs) of the model parameters.

More on MCMC methods, and Bayesian inference, can be

found in [22].

In this case a sequence of three RQ elements, i ∈ {1, 2, 3},

the posterior distributions of the model parameters are shown

in Fig. 7. In particular, for each of the three RQ elements

i ∈ {1 . . . 3}, top row shows time constants τi, second row

shows resistances Ri, and third row shows their corresponding

αi exponents. The bottom row shows serial resistance. Note

that the parameters that belong to individual RQ element are

denoted with the same colour.

C. Fault diagnosis

The onset of faults typically results into a change of the

extracted feature values. The problem of reliable change

detection in selected feature is outlined in Fig. 8. The right-

hand figure shows the desired scenario i.e. the feature values

exhibit steady growth. Once the value surpasses the pre-

defined threshold an alarm is triggered. However, in the case

of incipient faults, the extracted feature values become close to

a pre-determined threshold value. Due to small variations one

can observe numerous short periods when the feature value is

higher than the threshold. This may lead to excessive rate of

false alarms, and thus reducing the confidence in the the PHM

system as a whole. This is a known problem that is usually

solved either by employing some sort of filtering approaches

or increasing the threshold values. Filtering approaches reduce

the response time of the detection system, whereas increasing

the threshold values reduces the its sensitivity. These problems

can be resolved by employing robust statistical tests.

Time Time

Alarm Alarm

FeatureFeature

Threshold

STABLE DETECTION UNSTABLE DETECTION

ON

OFF

Fig. 8: Problem with detection detection stability

A change is established by quantifying dissimilarity among

the features’ statistics in current and nominal fault-free state.
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By calculating Jensen-Rényi (JR) divergence among empirical

distributions of the features, the need for known operating

conditions and data records at various system failures is

avoided. The approach was initially developed for vibration-

based diagnostics for gears and bearings under constant and

variable operating conditions, here is adopted for change

detection in the parameters of an ECM, such as the one

presented in previous section.

To this end, the change detection algorithm builds on gener-

alised JR divergence to quantify the dissimilarity among two or

more PDFs. The JR divergence JRw
α quantifies dissimilarity

among n PDFs:

JRw
α (P1, . . . ,Pn) = Hα

(
n∑

i=1

wiPi

)
−

n∑
i=1

wiHα (Pi) ,

(5)

In (5) Hα is Rényi entropy and
∑n

i=1 wi = 1. The selection

of weights wi in (5) is in principle arbitrary. With wi selected

uniformly i.e. wi = 1/n, the divergence reaches maximal

value.

JR divergence quantifies shared information among n ran-

dom variables. If they are identical, i.e. P1 = P2 = . . . = Pn,

divergence is zero. However, if one of them deviates even

slightly, the JR divergence becomes different from zero. There-

fore, JR divergence carries information about dissimilarity

among n PDFs.

Since we are seeking a way to detect a change in the

statistics of the parameters of an ECM which were estimated in

the previous section, JR divergence offers an elegant solution.

To detect a change in the parameter, all that is needed

is a reference set where the fuel cellwas operating under

normal operation. Once the reference data is available, we

can compare the online estimates of the model parameters

with the reference ones. This is demostrated in Fig. 9. To be

more precise, Fig. 9a shows how one of the parameters in from

Fig. 7 behaved during a 600h long durability experiment of

an SOFC short stack comprising of 6 cells. During this test,

the data was collected every 6 hours. The figure was obtained

by processing the data as described above in the paper. Note

that there are three events that were intentionally triggered,

which are marked by yellow strips. It is apparent that the

selected condition monitoring parameter is affected by these

changes. After the first event, the cell recovered, however,

after the second experiment the cell remained permanently

damaged. The change detection facilitated by employing JR

divergence is shown in 9b. In this case, 10 PDFs were included

in a reference data set, and compared with a set of 10 in

an ”online” mode. The JR divergence detects a first change

in the parameter clearly, thus triggering the alarm. After this

first event the cell stabilised and returned to normal operation.

Further in the experiment, the the second event also caused

severe change in the parameter. The algorithm clearly detected

this change. However, after this second event the cell never

recovered to its original state, hence the value of JR divergence

remained at high level.

0.01

0.02

0.03

0.04

(a) Time evolution of the parameter

0 100 200 300 400 500
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2

3

4

5

6

7

Time index

JR
D 
fo
r 
R2

(b) JR divergence based change detection

Fig. 9: Results of the proposed JRD based fault detection

approach employed on a 3000 hours SOFC run-to-failure

experiment.

D. Prognostics

Various approaches to condition monitoring have been pro-

posed with the aim to detect the onset of fault and hence

allow for the design of accommodation actions [6], [23].

However, for safety reasons and maintenance purposes, the

information of particular practical value is how long will the

system operate prior to its end of life (EOL). Relatively little

attention has been devoted to the development of algorithms

for predicting SOFC remaining useful life (RUL).

So far, some more work has been done in the area of

proton exchange membrane (PEM) fuel cells. Although PEM

and SOFC differ in many aspects, it is worth screening the

main ideas applied to PEM. For example in [24], the authors

discussed and summarised challenges related to PEM fuel cell

prognostics and RUL predictions. The authors identify the

importance of suitable health indicators for RUL prediction

and address the definition of EOL point of fuel cells.

Works related to RUL prognosis in PEM aim at modelling

temporal evolution of stack voltage, voltage related power

output, or efficiency due to degradation [24]. The most com-

mon approach is to consider voltage as state of health (SOH)

indicator and perform RUL upon evident drift in stack/cell

voltage. Such a characterisation of SOH is often justified

because voltage is directly associated with power output, and

hence the efficiency of power conversion. Relatively few works

define SOH differently, see e.g. [25]. Various empirical models

are then employed in order to predict voltage drop in future

7

Ohrid, North Macedonia, 27-29 June 2019



and estimate RUL. The employed models range from simple

ones with linear, polynomial and exponential structures [26], to

complex structures common in machine learning society [27]–

[30].

However, from the practical point of view, such approaches

become quickly unsatisfactory, especially under varying op-

erating conditions. This issue was recently addressed and

published by the authors [31]. In the afformentioned paper, the

authors propose an an estimator of stack’s internal resistance,

such as the one in Fig. 7, by employing an Unscented Kalman

filter (UKF).

1) RUL estimation: The main concept of RUL estimation

is outlined in Fig. 10. At each time moment k, when current

estimates of internal resistances become available, the model

parameters are updated. Next, the model is used in open-loop

simulations until time step k+N , when the modelled feature

crosses a pre-defined failure threshold. RUL is then simply N
number of steps multiplied by the sampling time.

The RUL plot displayed in lower part of Fig. 10 is obtained

by plotting estimated RUL distribution at each time moment k.

An example of such a plot is shown in Fig. 11. Explanation

of the Fig.is as follows. The x-axis shows running time, while

the y-axis displays the RUL distribution. True RUL is denoted

by dashed thick line and it shortens linearly in time. The blue

thick line is the estimate most probable value of RUL, while

the colored contours plot corresponding distribution. In the

beginning of the experiment, when only a little information

about the degradation is available, the predictions are poor.

With time passing, the stack degrades further and the model

incorporates this new information. Thus, model becomes more

accurate and is able to predict RUL more accurately. More

details can be found in [31].

Fig. 10: RUL prediction concept

2) Degradation modelling: In order to be able to perform

accurate RUL estimation accurate degradation models are

required. Although, degradation is a very complicated process,

sufficiently accurate RUL estimations can be achieved using

quite simple approaches.

One of such models described in [32] reads:

rd(FU, T, j) =
0.59FU + 0.74

1 + e(
T−1087
22.92 )

(
e2.64j − 1

)
. (6)

where rd is the degradation rate, FU , T and j are fuel utilisa-

tion, temperature, and current density, respectively. These are

all process variables, which can be manipulated and controlled

in order to minimise the degradation rate. Model (6) was

recently adopted for predicting how the fuel cellstack will

degrade in future [33]. The parameters, i.e. numeric values

in (6) were estimated from the data employing Bayesian

approach.

The prediction results are shown in Fig. 11. The results show

that 800 hours before the end-of-life, the model accurately

predicts the RUL. Furthermore, the variance (uncertainty) of

the predictions are decreasing as the time progresses i.e. the

model predictions are becoming more precise as we approach

the end-of-life.

IV. CONCLUSION

The presented results addressed three aspects of PHM

for SOFCs. A solution is provided regarding the feature

extraction using fractional order models of SOFCs. Based on

the statistical properties of these features a reliable change

detection algorithm is proposed. The algorithm is based on

multi-dimensional JR divergence. Finally, a computationally

efficient algorithm for RUL estimation is presented.

Taking into account the maturity level of the SOFC tech-

nology, we should be witnessing an increased number of

installations of such systems. By doing so we will become

more self-reliable in the context of energy security, since

all the raw materials required for these systems are readily

available in our region. Furthermore, the fuel cell technology,

in particular SOFC, provides an approach for local fuel pro-

duction. All these benefits makes the hydrogen technology a

viable candidate in the process of seeking alternative to our

dependence of fosill fuels.
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