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Abstract – In this paper, examination of possibility and 
effectiveness of extreme learning machines (ELM) application to 
predict wireless channel conditions for single-input single-output 
(SISO) systems in microcellular and picocellular environments is 
carried out. Normalized mean squared error (NMSE) and time 
consumption are used as performance indicators. The 
experimental results on measured values for signal-to-noise ratio 
(SNR) show high accuracy of the ELM prediction model and short 
execution time.  
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I. INTRODUCTION 

Knowledge of information about state of wireless channel is 
increasingly important. The reason of that trend lies in demands 
for high-data services and limited wireless spectrum. 
Unfortunately, a state of wireless channel changes very 
quickly, so channel state obtained by channel estimation can 
become outdated due to delay caused by processing and 
feedback phases. The system performance enhancement can be 
achieved using channel prediction based on channel states in 
previous moments rather than using channel estimation [1].  

In the open technical literature, there are several papers 
dealing with channel states prediction. Autoregressive (AR) 
model, support vector machine (SVM), discrete wavelet 
transform (DWT) method in combination with AR and linear 
regression (LR) algorithm (DWT-AR-LR) and echo state 
network (ESN) are widely explored in [2]-[6].  

Extreme learning machine (ELM) is a learning algorithm for 
feedforward artificial neural networks with one hidden layer. 
Compared with traditional artificial neural networks, ELM may 
achieve better generalization performance for regression and 
classification cases. ELM tends to minimize training error with 
the smallest norm of weights. In addition, ELM has faster 
learning speed, i.e. significantly low computational time 
required for training (up to thousands of times) [7]-[9]. It 
increases training speed by randomly assigning weights and 
biases in the hidden layer, instead of iteratively adjusting its 
parameters by gradient based methods.  

In this paper, the effectiveness of prediction scheme based 
on ELM is explored for microcellular and picocellular 
environments. Data sets used for training and testing contain 
measured signal-to-noise ratio (SNR) samples for scenarios 
described in details in [10]. Performance metrics used for 
analysis of the approach proposed is normalized mean squared 
error (NMSE) and time consumption. 

The rest of the paper is organized as follows. Section II 
provides brief description of ELM. Section III describes 
communication scenario, data sets and ELM-based prediction 
algorithm. Experimental evaluation is presented in Section IV, 
while Section V concludes the paper.    

 

II. EXTREME LEARNING MACHINES  

Let’s denote N training samples as (xj, yj), j=1,...,N, where   
xj = [xj1, xj2, ...,  xjn]T  Rn represents the j-th n-dimensional 
training instance and yj = [yj1, yj2, ... , yjm]T  Rm represents the 
j-th target value of the dimension m. ELM has the unified 
solutions for regression, binary and multiclass classification. In 
the case of regression, which is of interest for problem 
considered in this paper, it holds that m=1 [7]. Generally, the 
output of a standard single hidden layer feedforward network 
(SLFN) with L hidden neurons and activation function h(x) is 
defined as 
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where wi = [wi1, wi2, ... , win]T , i=1,...,L, is the weight vector 
connecting the i-th hidden neuron and all input neurons, i = 
[ i1, i2, ... , im]T represents the weight vector connecting the i–
th hidden neuron and all the output neurons, and bi is the 
threshold of the i–th hidden neuron. According to ELM theory, 
wi and bi can be randomly and independently assigned a priori, 
i.e. without considering the input data [8]. 

The SLFN defined with (1) has approximation capabilities 
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The previous equation can be expressed in matrix form 
resulting in 

 =H Yββββ , (3) 
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The matrix H represents the hidden layer output matrix of the 
neural network where the i-th column of H represents the i–th 
hidden neuron’s output vector in regard to inputs x1, x2, ..., xN. 
The output weights can be analytically determined by finding 
the unique smallest norm least-squares solution of the linear 
system described by (3). In order to improve the performance, 
the constrained optimization problem can be formed for ELM, 
as shown in [7]: 
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where 1,...,
T

j j jmξ ξξ = is the training error vector of the m 

output nodes with respect to the training sample xi, while C 
represents tradeoff parameter between model complexity and 

allowed errors jξ  during training. Based on Karush-Kuhn-

Tucker (KKT) theorem, the optimization problem previously 
defined is equivalent of solving the dual optimization problem 
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where 1,...,
T

j j jmα α α= are Lagrange multipliers. 

After solving (8) based on KKT conditions, which can be 
found in detail in [7], the following solution is obtained: 
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and the function of ELM is: 
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III. APPLICATION OF ELM FOR WIRELESS 

CHANNEL PREDICTION  

A. Channel Description  

The efficiency of the proposed machine learning technique 
for SNR prediction in wireless communication system 
employing a single transmit antenna and a single receive 
antenna is investigated. Namely, single-input single-output 
(SISO) channel in two different environments is considered: 

1) B channel model represents a microcell environment 
where distance between mobile station (MS) and base station 
(BS) is in the order of 30 m. It assumes indoor-to-outdoor 
propagation with BS located outside and indoor environment 
usually consisted of several small offices. 

2) E channel model refers to indoor-to-indoor scenario. It 
represents a picocell environment in modern open office with 
windows metallically shielded.  

B. Data Sets  

Data sets used for analysis in this work contain SNR channel 
values obtained based on measurement campaigns described in 
details in [10]. A series of SNR samples

( ) ( ) , 1,x k x kT k N= = , from [10], are used for network 

training and testing. Parameter T denotes sampling interval and 
parameter N is the total number of samples. 

C. Prediction Algorithm 

In general, for a given training set with N instances of n 
features, the sigmoid activation function g(x) and L hidden 
neurons number, the ELM algorithm for regression can be 
summarized as follows: 

 
Training procedure 
(a) Assign random input weights wi, and biases bi, i = 1,..., L; 
(b) Compute the hidden layer output matrix H using (4); 
(c) Compute the output weights  using (9); 

 
Testing procedure 
(a) Compute the hidden layer output vector h(x) for current 

instance from the test set using (4); 
(b) Compute the output f(x) according to (10) using the  

obtained in step (c) of the training. 
 

IV. EXPERIMENTAL EVALUATION 

In this section of the work, the accuracy of the ELM network 
for the time series prediction of SNR in the SISO system is 
evaluated using NMSE as a prediction error metrics. NMSE is 
defined as 
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Data sets containing the measured instantaneous SNR values at 
the receiver side for the case when SNR at the transmitter side 
is 20 dB for both B and E channel model are used to test the 
proposed method. Analysis is carried out using N=4000 
samples. The data sets are divided into two equal sets for 
training and testing (Ntr=Nte=2000). It is determined by 
simulation that there is no need to use more than 3 neurons in 
the input layer. Sigmoid function is used as activation. For the 
tests, the ELM is implemented in MATLAB. As an illustrative 
example, Fig. 1 shows target signal and prediction curve for the 
case of E channel.  
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Fig. 1. Target signal and prediction curve for E channel 
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Fig. 2. NMSE versus number of hidden neurons 
 

The NMSE is evaluated for both training and test set, with 
training and test times, measured in seconds on an Intel Core i5 
computer. Results for the NMSE as a function of the number of 
neurons in hidden layer are presented graphically in Fig. 2. It is 
notable that in the case of E channel, the NMSE on the test set 
remains in range from 0.1 to 0.006 for the number of neurons 
in hidden layer in range from 5 to 200. In the case of B channel, 
for the same prediction network, the NMSE values are slightly 
lower. They are in the range from 0.08 to 0.004. Furthermore, 

the analysis shows that increasing number of neurons above a 
certain value does not improve prediction results significantly. 
We can also observe that the NMSE on the training set follows 
trend of the NMSE on training set regardless of number of 
hidden neurons, which implies that models are not overfitted. 
The obtained values of the NMSE for all ELMs, regardless the 
number of neurons in the hidden layer are within the expected 
range of precision and comparable to the results obtained in 
other studies [5, 6].  

Table I contains training and test time in seconds for 
different number of neurons in hidden layer.  We can see that 
training time for all 2000 instances in training set is only 0.001 
seconds with 100 neurons in hidden layer, while prediction for 
all 2000 instances is done in 0.06 second. With increase of 
number of neurons up to 1000, these times slightly increase. 
For more than 2000 neurons in hidden layer training time 
increases significantly (greater than 1s), while test time 
increases slightly (but it is still less than 1s). These results 
demonstrate high performances in terms of training and test 
speed on this data set. 

TABLE I 
TIME CONSUMPTION OF THE ELM MODEL 

Number 
of 

neurons  

Training 
time (s) 

Test 
time (s) 

5 0.001 0.0312 
10 0.001 0.0312 
15 0.001 0.0468 
20 0.001 0.0468 
50 0.001 0.0468 
100 0.001 0.0625 
200 0.0468 0.0625 
300 0.0781 0.0625 
400 0.2031 0.0625 
500 0.2187 0.0756 

1000 0.8437 0.1406 
2000 3.6875 0.3281 
3000 8.9218 0.3593 
4000 16.9063 0.4843 
5000 29.1719 0. 5781 

 
 In order to compare the results of the ELM with other 
common classification techniques, we have measured accuracy 
of the Linear SVM and RBF SVM, on the same dataset. NMSE 
for Linear SMV was 0.0118, while NMSE for RBF SVM 
reached 0.0083. It can be noted that ELM outperforms Linear 
SVM in terms of NMSE, having the similar algorithm 
complexity. On the other side, ELM reaches results comparable 
to the RBF SVM, while operating significantly faster during the 
training and testing. 

V. CONCLUSION 

This paper has investigated the ELM-based prediction 
scheme for SISO systems in microcellular and picocellular 
environments. The effectiveness of the framework has been 
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confirmed using NMSE as a performance measure along with 
training and test time. Simulation results have shown that no 
more than several hundred neurons in hidden layer should be 
used. Further increasing the number of neurons will not result 
in significant prediction accuracy gain. The NMSE of the order 
of 10-3 and training and test time less than 0.22 and 0.08 
seconds, respectively, can be expected.  
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