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Abstract –The paper explores a space complexity function for a
backtracking algorithm solving the N-queens problem in 
embedded applications where application memory is limited. In 
such a case it is necessary to plan the needed memory space  and 
to observe the space complexity function in some input domain. 
In this paper the detailed space complexity analysis is provided 
for N < 40.
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I. INTRODUCTION

Backtracking algorithms are one of the solutions of the 
constraint satisfaction problem [1]. Such an algorithm 
searches for a path in a tree, keeping in memory unexplored 
promising segments of paths. This raises a question of 
memory requirements, known as the space complexity 
problem, which is the focus of this paper. Using a 
backtracking algorithm for solving a problem is a standard 
approach in the theory of algorithms [2] and Artificial 
Intelligence [3], in cases when no information is given about 
the tree to be searched. Basically it uses a generate-and-test 
method, in which a tree expansion routine generates the next 
set of promising nodes, and a tester routine tests them for 
constraint satisfaction.  The backtracking class of algorithms 
has been studied since the 1960's [4] and basic techniques are 
well known[5][6]. A backtracking algorithm has exponential 
worst-case time complexity, but there are studies showing that 
under certain conditions their average time complexity may 
not be exponential [7][8]    

Space complexity of a backtracking algorithm has attracted 
less attention than time complexity. Newer theoretical 
reasoning has pointed out that space complexity is possibly 
polynomial [1]. That points out possibility of using such an 
algorithm in embedded applications where application 
memory is limited. Usually those applications require best-
approximation rather than worst-case asymptotic 
approximation of needed space.  

A prominent example of a problem which is being solved 
using a backtracking algorithm is the N non-attacking queens, 
in short the N-queens problem The N-queens problem is 
stated as: given a NxN chessboard, arrange N queens such that 
they do not attack each other . The problem has long history, 
starting in 1850 as a chess problem [9][10].

The N-queens problem is a benchmark problem and is used 
to test various types of algorithms. Among many approaches 
and applications let us mention  integer programming [11], 
multitasking programming [12], linear congruence equations 
[13], dynamic programming [14], genetic algorithms [15], 
neural networks [16] and deductive database [17]. Currently, 
fast search algorithms in polynomial time are known for large 
N [18][19]. 

Bactracking can be considered as an operation defined over 
tree objects. Other operation are search, traversing, etc, many 
of the described in literature (e.g., [20]). Recently new 
operations on trees such as the Binary Roll Tree [21-24] have 
been proposed.  

The solutions of the N-queens problem produce a particular 
pattern on a NxN matrix.  An example of an N-queens pattern 
for N = 26 is given in Fig. 1 [25]. 

Fig. 1. An N-queens pattern for N=26

There are two variants of the problem: existence variant, in 
which only one solution is sufficient, and optimization 
variant, in which all feasible solutions need to be found and 
the optimal one to be chosen according to some optimality 
criterion. The numbers of solutions of the optimization variant 
for a given N are known, and for the first 10 values of N they 
are 1, 0, 0, 2, 10, 4, 40, 92, 352, 724 respectively. The 
numbers grow exponentially and for N=23 the number of 
possible solutions is over 24 trillion. Since the space 
complexity is the focus of this paper, the existence variant of 
the problem will be explored. 

A. Scope of the Paper 

This paper assumes an embedded system which has limited 
memory space for an application that runs a backtracking 
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algorithm solving an N-queens type of problem. Since the 
memory is limited, we explore the space complexity for N  < 
Nlimit , in our case Nlimit=40. Nlimit  will depend on particular 
capacity of a embedded system. 

II. METHODOLOGY

Firstly we provide a terminology that is we use in our 
research and we believe useful for both educational and 
research purposes.  

A current path in a tree is a string of nodes passed up to 
the current node; 

A promising path is the one whose last node is promising; 
A node is promising if it can produce a next feasible 

node; 
A feasible node is one that satisfies some constraints; 
Given N, the promising path of length k is a string 

e[1]e[2]...e[k] where e[k] is a feasible node; 
The promising path can be extended (toward a possible 

solution) or shortened (backtracked to a previous feasible 
path); 

If k = N, a solution path of the problem has been found.  

Our approach is to look for polynomial bounds for a limited 
N, rather than finding asymptotic complexity for an unlimited 
N.  

In a space complexity analysis the crucial issue is what 
should be kept in memory. For a backtracking algorithm it is 
the set of all promising paths. A promising path should be 
kept in memory either until it is explored or until a solution is 
found. A promising path in a search tree of the N-queens 
problem can be represented in various ways, and we used a 
string representation. For keeping in memory all the 
promising paths we used a stack data structure. The stack data 
structure is chosen because it implicitly resolves the issue of 
which promising path will be explored next – it is the one on 
the top of the stack.  

The Java program written for this research is based on the 
following pseudocode:  

Non-recursive backtrack algorithm: 
 input N 
 expand the parent node 
 obtain the first N successor nodes 
 stack them in reverse order 
 repeat 

pop a node from the stack 
expand and test the expanded node 

  if(feasible AND solution_length=N)  
   then solution found, print it 
  if(feasible) push it into stack  
 until empty stack 

The solution is represented as a string which grows in 
length (solution-length) as the procedure progresses. At each 
step, a new element is appended from a set of possible 
expansions. The expansion set is tested for feasibility, and, if a 
node is not feasible, its subtree is pruned and the next element 
of the expansion set is considered. The length of the final 

solution is known to be N, and, once N is achieved, a test for a 
possible solution gives a solution of the problem. 

III. RESULTS

In our experimental research, we defined a space 
complexity function SpaceQns(N), as the length of the stack 
upon finding a solution to the N-queens problem. The values 
of SpaceQns(N) for N < 40, alongside the values of the 
functions N2, 2N2, and 3N2, are shown on Fig. 2. 

Fig. 2. Space complexity function SpaceQns(N) in range N <40. 

More detailed observation gives the following description 
of space complexity of the N-queens problem, as represented 
by the SpaceQns(N) function: 

  ≥ N2, N > 17,  i.e. Ω(SpaceQns(N)) = N2

SpaceQns(N)     
  ≤ 3N2, 4<N<N3, i.e. O(SpaceQns(N))= 3N2

where  N3 = min{N | SpaceQns(N) ≥ 3N2} is the point  when  
SpaceQns(N)  passes the 3N2 bound. The value N3 is larger 
than 40 and is outside our research scope, limited to N < 40. 
Within the experimental range of 1<N<40, it can be seen that 
Ω(SpaceQns(N)) = N2 (since SpaceQns(N) > N2 for the entire 
range) and O(SpaceQns(N)) = N2 (since SpaceQns(N) < 3N2

for the entire range), which then leads to the conclusion that 
Θ(SpaceQns(N)) = N2 (as per [27]), i.e., the space complexity 
of the backtracking algorithm for solving the N-queens 
problem is tightly quadratic. On Fig. 2 it can be seen that the 
SpaceQns(N) function can be approximated with the function 
2N2.

IV. CONCLUSION

The paper provides a definition of terms used in backtrack 
programming and uses those terms in an experimental 
investigation on space complexity of a backtracking algorithm 
for solving N-queens problems. The scope of solution is 
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considered for N < 40, which is a non-asymptotic case, a case 
oriented toward an application of an embedded system.  

The experimental investigation shows that in that scope the 
space complexity is a quadratic function, more specifically it 
can be approximated with the function 2N2. A more detailed 
observation in various segments of N < 40 is also provided. A 
precise knowledge for space complexity function (in terms of 
2N2 rather than O(N2)) is especially needed in embedded 
applications, where memory management is part of 
application design.  
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