
A Non-asymptotic Space Complexity of a Backtracking
Algorithm for the N-queens Problem

Adrijan Bozinovski1 and Stevo Bozinovski2

Abstract –The paper explores a space complexity function for a
backtracking algorithm solving the N-queens problem in
embedded applications where application memory is limited. In
such a case it is necessary to plan the needed memory space and
to observe the space complexity function in some input domain.
In this paper the detailed space complexity analysis is provided
for N < 40.

Keywords – space complexity, back-tracking algorithm, N-
queens problem.

I. INTRODUCTION

Backtracking algorithms are one of the solutions of the
constraint satisfaction problem [1]. Such an algorithm
searches for a path in a tree, keeping in memory unexplored
promising segments of paths. This raises a question of
memory requirements, known as the space complexity
problem, which is the focus of this paper. Using a
backtracking algorithm for solving a problem is a standard
approach in the theory of algorithms [2] and Artificial
Intelligence [3], in cases when no information is given about
the tree to be searched. Basically it uses a generate-and-test
method, in which a tree expansion routine generates the next
set of promising nodes, and a tester routine tests them for
constraint satisfaction. The backtracking class of algorithms
has been studied since the 1960's [4] and basic techniques are
well known[5][6]. A backtracking algorithm has exponential
worst-case time complexity, but there are studies showing that
under certain conditions their average time complexity may
not be exponential [7][8]

Space complexity of a backtracking algorithm has attracted
less attention than time complexity. Newer theoretical
reasoning has pointed out that space complexity is possibly
polynomial [1]. That points out possibility of using such an
algorithm in embedded applications where application
memory is limited. Usually those applications require best-
approximation rather than worst-case asymptotic
approximation of needed space.

A prominent example of a problem which is being solved
using a backtracking algorithm is the N non-attacking queens,
in short the N-queens problem The N-queens problem is
stated as: given a NxN chessboard, arrange N queens such that
they do not attack each other . The problem has long history,
starting in 1850 as a chess problem [9][10].

The N-queens problem is a benchmark problem and is used
to test various types of algorithms. Among many approaches
and applications let us mention integer programming [11],
multitasking programming [12], linear congruence equations
[13], dynamic programming [14], genetic algorithms [15],
neural networks [16] and deductive database [17]. Currently,
fast search algorithms in polynomial time are known for large
N [18][19].

Bactracking can be considered as an operation defined over
tree objects. Other operation are search, traversing, etc, many
of the described in literature (e.g., [20]). Recently new
operations on trees such as the Binary Roll Tree [21-24] have
been proposed.

The solutions of the N-queens problem produce a particular
pattern on a NxN matrix. An example of an N-queens pattern
for N = 26 is given in Fig. 1 [25].

Fig. 1. An N-queens pattern for N=26

There are two variants of the problem: existence variant, in
which only one solution is sufficient, and optimization
variant, in which all feasible solutions need to be found and
the optimal one to be chosen according to some optimality
criterion. The numbers of solutions of the optimization variant
for a given N are known, and for the first 10 values of N they
are 1, 0, 0, 2, 10, 4, 40, 92, 352, 724 respectively. The
numbers grow exponentially and for N=23 the number of
possible solutions is over 24 trillion. Since the space
complexity is the focus of this paper, the existence variant of
the problem will be explored.

A. Scope of the Paper

This paper assumes an embedded system which has limited
memory space for an application that runs a backtracking

1Adrijan Božinovski is with School of Computer Science and
Information Technology, University American College Skopje,
Macedonia, email: bozinovski@uacs.edu.mk

2Stevo Bozinovski is with the Department of Mathematics and
Computer Science, South Carolina State University, Orangeburg, SC,
USA. Email: sbozinovski@scsu.edu

176

Ohrid, North Macedonia, 27-29 June 2019

algorithm solving an N-queens type of problem. Since the
memory is limited, we explore the space complexity for N <
Nlimit , in our case Nlimit=40. Nlimit will depend on particular
capacity of a embedded system.

II. METHODOLOGY

Firstly we provide a terminology that is we use in our
research and we believe useful for both educational and
research purposes.

A current path in a tree is a string of nodes passed up to
the current node;

A promising path is the one whose last node is promising;
A node is promising if it can produce a next feasible

node;
A feasible node is one that satisfies some constraints;
Given N, the promising path of length k is a string

e[1]e[2]...e[k] where e[k] is a feasible node;
The promising path can be extended (toward a possible

solution) or shortened (backtracked to a previous feasible
path);

If k = N, a solution path of the problem has been found.

Our approach is to look for polynomial bounds for a limited
N, rather than finding asymptotic complexity for an unlimited
N.

In a space complexity analysis the crucial issue is what
should be kept in memory. For a backtracking algorithm it is
the set of all promising paths. A promising path should be
kept in memory either until it is explored or until a solution is
found. A promising path in a search tree of the N-queens
problem can be represented in various ways, and we used a
string representation. For keeping in memory all the
promising paths we used a stack data structure. The stack data
structure is chosen because it implicitly resolves the issue of
which promising path will be explored next – it is the one on
the top of the stack.

The Java program written for this research is based on the
following pseudocode:

Non-recursive backtrack algorithm:
 input N
 expand the parent node
 obtain the first N successor nodes
 stack them in reverse order
 repeat

pop a node from the stack
expand and test the expanded node

 if(feasible AND solution_length=N)
 then solution found, print it
 if(feasible) push it into stack
 until empty stack

The solution is represented as a string which grows in
length (solution-length) as the procedure progresses. At each
step, a new element is appended from a set of possible
expansions. The expansion set is tested for feasibility, and, if a
node is not feasible, its subtree is pruned and the next element
of the expansion set is considered. The length of the final

solution is known to be N, and, once N is achieved, a test for a
possible solution gives a solution of the problem.

III. RESULTS

In our experimental research, we defined a space
complexity function SpaceQns(N), as the length of the stack
upon finding a solution to the N-queens problem. The values
of SpaceQns(N) for N < 40, alongside the values of the
functions N2, 2N2, and 3N2, are shown on Fig. 2.

Fig. 2. Space complexity function SpaceQns(N) in range N <40.

More detailed observation gives the following description
of space complexity of the N-queens problem, as represented
by the SpaceQns(N) function:

 ≥ N2, N > 17, i.e. Ω(SpaceQns(N)) = N2

SpaceQns(N)
 ≤ 3N2, 4<N<N3, i.e. O(SpaceQns(N))= 3N2

where N3 = min{N | SpaceQns(N) ≥ 3N2} is the point when
SpaceQns(N) passes the 3N2 bound. The value N3 is larger
than 40 and is outside our research scope, limited to N < 40.
Within the experimental range of 1<N<40, it can be seen that
Ω(SpaceQns(N)) = N2 (since SpaceQns(N) > N2 for the entire
range) and O(SpaceQns(N)) = N2 (since SpaceQns(N) < 3N2

for the entire range), which then leads to the conclusion that
Θ(SpaceQns(N)) = N2 (as per [27]), i.e., the space complexity
of the backtracking algorithm for solving the N-queens
problem is tightly quadratic. On Fig. 2 it can be seen that the
SpaceQns(N) function can be approximated with the function
2N2.

IV. CONCLUSION

The paper provides a definition of terms used in backtrack
programming and uses those terms in an experimental
investigation on space complexity of a backtracking algorithm
for solving N-queens problems. The scope of solution is

177

Ohrid, North Macedonia, 27-29 June 2019

considered for N < 40, which is a non-asymptotic case, a case
oriented toward an application of an embedded system.

The experimental investigation shows that in that scope the
space complexity is a quadratic function, more specifically it
can be approximated with the function 2N2. A more detailed
observation in various segments of N < 40 is also provided. A
precise knowledge for space complexity function (in terms of
2N2 rather than O(N2)) is especially needed in embedded
applications, where memory management is part of
application design.

REFERENCES

[1] P. van Beek, "Backtracking Search Algorithms". In F. Rossi, P.
van Beck, T. Walsh (eds.) Handbook of Constraint
Programming, Elsevier, pp. 85-134, 2006

[2] G. Brassard, P. Bratley. Fundamentals of Algorithmics. Prentice
Hall, 1996

[3] E. Rich. Artificial Intelligence, McGraw-Hill,1983
[4] S. Golomb, L. Baumert, "Backtrack programming". Journal of

the ACM 12, pp. 516-524, 1965
[5] J. Fillmore, S. Williamson, "On backtracking: A combinatorial

description of the algorithm". SIAM Journal of Computing 3,
pp. 41-55, 1974

[6] J. Bitner, E. Reingold, "Backtrack programming techniques".
Communications of the ACM 18, pp. 651-656, 1975

[7] D. Nicol, "Expected performance of m-solution backtracking".
SIAM Journal on Computation 17(1), pp. 114-127, 1988

[8] H. Stone, P. Sipala, "The average complexity of depth-first
search with backtracking and cutoff." IBM Journal of Research
and Development 30(3), pp. 242-258, 1986

[9] F. Nauck , "Schach." Illustrierter Zeitung 361:352, 1850
[10] E. Pauls, "Das Maximalproblem der Damen auf dem

Schachbrete." Deutsche Schachzeitung, Bd. 29, pp. 129-134,
257-267,1874

[11] L. Foulds, D. Johnson, "An application of graph theory and
integer programming: Chessboard nonattacking puzzles."
Mathematics Magazine 57(3), pp. 95-104, 1984

[12] R. Clapp, T. Mudge, R. Volz, "Solutions to the N-queens
problem using tasking in Ada." SIGPLAN Notices 21, pp. 99-
110,1986

[13] C. Erbas, M. Tanik, Z. Aliyaziciogly, "Linear congruence
equations for the solution of the N-queens problem."
Information Processing Letters 41, pp. 301-306, 1992

[14] L. Rivin, R. Zabih, "A dynamic programming solution to the n-
queens problem" Information Processing Letters 41, pp. 253-
256, 1992

[15] K. Crawford, "Solving the n-queens problem using genetic
algorithms." Proc ACM/SIGAPP Symposium on Applied
Computing, Kanzas City, pp.1039-1047, 1992

[16] O. Shagrir, "A neural net with self-inhibiting units for the N-
queens problem." International Journal of Neural Systems 3, pp.
249-252, 1992

[17] J. Han, L. Liu, T. Lu, "Evaluation of declarative n-queens
recursion: A deductive database approach." Information
Sciences 105, pp. 69-100, 1998

[18] R. Sosic, J. Gu, "Fast search algorithms for the N-queens
problem." IEEE Transactions on Systems, Man, and
Cybernetics 21 (6), pp. 1572-1576, 1991

[19] R. Sosic, "A parallel search algorithm for the N-queens
problem." Proc Parallel Computing and Transputer Conference,
Wollongong, pp. 162-172, 1994

[20] Knuth D. The art of Computer Programming. Addison Wesley,
1997

[21] A. Božinovski, N. Ackovska, "The Binary Tree Roll Operation:
Definition Explanation and Algorithm", International Journal of
Computer Applications, vol. 46, no. 8, pp. 40-47, 2012

[22] A. Božinovski, G. Tanev, B. Stojčevska, V. Pačovski, N.
Ackovska, "Time complexity analysis of the binary tree roll
algorithm", Journal of Information Technology and
Applications, vol. 6, no. 2, pp. 53-62, 2016

[23] A. Božinovski, G. Tanev, B. Stojčevska, V. Pačovski, N.
Ackovska, "Space complexity analysis of the binary tree roll
algorithm", Journal of Information Technology and
Applications, vol. 7, no. 1, pp. 9-19, 2017

[24] G. Tanev, A. Božinovski, "A linear time algorithm for rolling
binary trees", Proceedings of the 17th IEEE International
Conference on Smart Technologies IEEE EUROCON 2017,
Ohrid, Macedonia, pp. 255-260, 2017

[25] A. Bozinovski, S. Bozinovski, "N-queens pattern generation: An
insight into space complexity of a backtracking algorithm",
Proceedings of the 3rd International Symposium on Information
and Communication Technologies. Las Vegas, Nevada, USA,
pp. 281-286, 2004

[26] The On-Line Encyclopedia of Integer Sequences, published
electronically at https://oeis.org, 2010, Sequence A000170

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein.
Introduction to Algorithms. Third Edition. The MIT Press, 2009

178

Ohrid, North Macedonia, 27-29 June 2019

