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Abstract – Bent functions are special set of cryptographic 
binary functions. These functions make very small subset of the 
total number of bent functions, especially for large number of 
variables. There is no a formal method for construction of bent 
functions. Therefore, methods for construction of bent functions 
are obtained by using the discovery of bent functions within a 
group of functions. Testing of bentness across a group of 
functions, even for small numbers of variables, requires a lot of 
processing time. Thus, this paper proposes an efficient method 
for bentness testing of binary functions using statistical analysis 
of binary functions. The standard method for bentness testing is 
based on the usage of the fast Walsh transform calculations. This 
method uses conditional testing of the initial set of particular 
Walsh coefficients. In this paper, the selection of coefficients for 
conditional testing is determined using statistical analysis of 
binary functions. Experimental results showed that the proposed 
method can be efficiently used for bentness testing for the 
functions of 6 to 10 variables. 
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I. INTRODUCTION 

Bent functions are binary functions with extreme 
nonlinearity properties. They are actively studied in 
cryptography, logic synthesis, switching theory, coding theory, 
and other areas. They become very important for their 
intensive applications in cryptography. 

Bent functions have specific properties and various 
characterizations. They ensure the cryptographic effectiveness 
and they can resist to various cryptanalysis attacks. They exist 
only for the even number of variables. There is no a precise 
general definition of the structure of bent functions. Also, there 
is no a formal method for construction of all bent functions. 
Thus, during recent years, it has been developed a lot of 
methods for construction subsets of bent functions that have 
particular properties. The most known methods for 
construction of bent functions are based on applying 
combinatorial, algebraic and permutation methods. For 
example, combinatorial construction methods are Maiorana-
McFarland, partial spreads, Dobbertin, iterative constructions, 
and etc [1]. The most widely known algebraic constructions 
are monomial bent functions in the Kasami, Gold, Dillon and 
Canteaut-Leander case, hyper bent functions, Niho bent 
functions, and etc [2]. The permutations construction methods 
describes how new bent functions can be obtained from a 
known bent function, for example in [3].  

However, bent functions obtained in this way constitute a 
small subset of all bent functions, especially for large number 

of variables [4]. Further, the subsets of bent function generated 
by proposed deterministic methods do not provide any, for 
example, cryptographic quality to constructed bent functions. 

In cryptographic applications, bent functions need to be non-
deterministic. Therefore, bent functions are determined by 
using a discovery of random bent functions, but the searching 
time may become prohibitively large when the number of 
variables is greater than approximately 12. The existing 
methods are mainly focused on the reduction of the searching 
time [5]. 

The most common characterization of bent functions is the 
equal absolute values of all coefficients of their Walsh spectra. 
All coefficients has the absolute value 2/2n  [1]. 

 Testing of all Walsh coefficients requires computation of 
all n2 coefficients and related comparisons. This computation, 
even for small numbers of variables, requires a lot of 
processing time. Consequently, the number of n-variable 
Boolean bent functions is known only for n  [4]. The general 
number of bent functions is an open problem. Note that, the 
number of Bent functions increases rapidly with increasing n. 
Thus, before testing of all Walsh coefficients, the method for 
bentness testing uses conditional testing of the initial set of 
particular Walsh coefficients. This initial set of Walsh 
coefficients usually includes: the first, second, and middle 
element of the Walsh spectrum. 

The efficiency of using conditional testing for particular 
Walsh coefficients depends on the structure of binary function 
for which the Walsh spectrum will be calculated. Therefore, in 
this paper it is proposed an efficient method for bentness 
testing of binary functions using statistical analysis of binary 
functions. The statistical analysis of binary functions shows 
the most efficient selection of the Walsh coefficients for 
conditional bentness testing. The statistical method is based 
on the counting of how many times a particular Walsh 
coefficient of binary n-variable non-bent functions has the 
absolute value 2/2n . For the binary functions of many 
variables, statistical analysis can be applied on the set of 1 
million of functions that satisfied bent criteria. The most 
common bent criteria is restriction of binary function in the 
spectral Reed-Muller domain, Since the algebraic degree of an 
n-variable bent function is less or equal to n/2, the number of 
non-zero elements of Reed-Muller spectrum vector is limited 
and their positions also in the spectrum vector are restricted. 
Thus, proposed method uses computation of the fast Reed-
Muller transform and the computation of the fast Walsh 
transform. 

These statistical results indicate that there is statistically 
significant relationship between the selection of the Walsh 
coefficients for conditional bentness testing and efficiency of 
bentness testing. Experimental results showed that the 
proposed method can be efficiently used for bentness testing 
for the functions of 6 to 10 variables. 
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II. PRELIMINARIES  

The Reed-Muller transform [6] represents an important 
operator for obtaining AND-EXOR expressions of binary 
functions. The Reed-Muller transform matrix of order n, 
denoted by )(nR , is defined recursively as:  
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The Walsh transform [6] is based on a set of orthogonal 
functions defined by J. L. Walsh which are an extension of a 
set of functions defined by H. Rademacher. Analogously to 
previous transforms, the Walsh transform matrix of order n in 
Hadamard ordering, denoted by )(nW , is defined as:  
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The spectrum of a binary function f given by truth vector 
TnfffF )12()1(),0( ,, is computed as:  

FnTS f )( ,   (3) 
where T(n) is any of the three matrices R(n), or W(n), with 
computations performed in GF(2) for the Reed-Muller 
transform, and in the set of rational numbers for the Walsh 
transforms.  

A binary function ),...,,( 21 nxxxf  in )1,1( encoding is 
called bent if all Walsh coefficients in vector WfS ,  have the 

same absolute value 2/2n [1].  
Algebraic degree of bent functions ),...,,( 21 nxxxf  in Reed-

Muller spectral domain is at most
2
n for 2n [2].  

Walsh transform [6] is an important mathematical tool for 
the analysis of Boolean functions. It can be shown that with 

)1,1( encoding of Boolean function values, the Walsh 

coefficients are even integers in the range n2  to n2 . Since 
the first row of )(nW  is equal to constant 1, conditional 
bentness testing requres calculation of the first Walsh 
coefficient )0(,wfS  expressed as:  
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Analogously to previous, second row )(nW  takes the 
successively values +1 and -1. The conditional bentness 
testing requires calculation of the second Walsh coefficient 

)1(,wfS  expressed as:  
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Since the middle row of )(nW  takes the value +1 in the first 
half and -1 in the second half, the conditional bentness testing 
requires calculation of the middle Walsh coefficient 
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n
wfS  expressed as: 

12

2

12

0

1
,

1

1

)()()2(
n

n

n

ii

n
wf iFiFS .   (6)   

The calculations of first, second and middle Walsh coefficient 
are exploited in the standard method for the bentness testing 
of the binary function in the Reed-Muller spectral domain in 
order to avoid computation of all Walsh coefficients for bent 
testing. 

The recursive definition of the Reed-Muller and the Walsh 
transform matrices, expressed in Eq. (1), and Eq. (2) 
respectively, is the fundamental for the definition of fast  
Reed-Muller and the fast Walsh transform algorithm similar 
to a fast Fourier transform (FFT) algorithm [6].  

The computation of the fast transform algorithm consists 
of the repeated application of the same “butterfly” operations 
determined by the basic transform matrices. Figure 1 shows 
the “butterfly” operations for the Reed-Muller and the Walsh 
transform matrices [6]. 
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Fig 1. The “butterfly” operations for the Reed-Muller and the Walsh 
transform matrices  

 
The “butterfly” operations [6] are performed in each step 

over a different subset of data. Fig. 2 shows the flow graphs of 
the fast Walsh transform algorithm for computation of the 
Walsh spectrum of a three-variable logic function f given by 
the truth- vector TfffF )7()1(),0( ,, .  

 
 

Fig. 1. The flow graph of the fast Walsh transform algorithm of the 
Cooley-Tukey type for the computation of the Walsh spectrum of a 
three-variable Boolean function.  
 

This algorithm is highly exploited for benthess testing in 
the algortihm for discovering bent functions in the Reed-
Muller domain. 
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III. STATISTICAL ANALYSIS OF THE VALUES OF 
WALSH COEFFICIENTS 

The statistical analysis of the Walsh coefficients values is 
based on the counting of how many times a particular Walsh 
coefficient of binary n-variable non-bent functions has the 
absolute value 2/2n .  

For example, for a binary function of 6 variables, there 
exist 64 Walsh coefficients. Table 1 shows example of 
statistical analysis of how many times a particular Walsh 
coefficient of 6-variable non-bent functions has the absolute 
value 2 2/6 .  

TABLE I 
EXAMPLE OF THE STATISTICAL ANALYSIS OF HOW MANY TIMES A 

PARTICULAR WALSH COEFFICIENT OF 6-VARIABLE NON-BENT 
FUNCTIONS HAS THE ABSOLUTE VALUE  

Index of 
Walsh 

coefficient 

Equal to 
2/62 for non-

bent functions 

Index of 
Walsh 

coefficient 

Equal to 
2/62 for non-

bent functions 
1  33 61302754 
2  34  
3  35  
4  36  
5 62156341 37  
6    
7   63216660 
  40  
  41 62604235 

10 62656734 42  
11 62657004 43  
12  44 62534014 
13  45 63376543 
14  46 62613453 
15  47 62613447 
16    
17 61302747  62616310 

  50  
  51 63316740 

20  52  
21  53  
22 63216367 54  
23 63216671 55  
24  56  
25 62604222 57  
26    
27    

 62534001 60  
 63376520 61 62714230 

30 62613426 62  
31 62613444 63  
32  64  

 
The statistical analysis is applied on the testing of set of 1 

million binary functions that satisfied bent criteria in Reed-
Muller domain. For a binary function of 6 variables, it is 
evident that statistical analysis shows that first Walsh 

coefficient for non-bent functions in the least number of cases 
have It means that first Walsh coefficient is 
the most optimal solution for conditional bentness testing. The 
next Walsh coefficient, that in the least number of cases has 

, is the last Walsh coefficient. Note that for 
binary function of 6 variables the difference between 
statistical values of the first and the last Walsh coefficient is 
not so high, but it will increases rapidly with increasing 
number of variables. The next Walsh coefficient, that in the 
least number of cases has , is the middle 
Walsh coefficient. In the case of functions of 6 variables it is 
Walsh coefficient that has index 33. 

The statistical analysis of the Walsh coefficients values 
showed that, initial set of Walsh coefficients need to include: 
the first, the last, and the middle Walsh coefficient for 
conditional testing, respectively. It means that before testing 
of all Walsh coefficients, the method for bentness testing need 
to perform conditional testing of the first, then testing of the 
last and finally of the middle Walsh coefficient. The 
efficiency of the proposed method for bentness testing will be 
experimentally tested by using a discovery of random bent 
functions.   

IV.   METHOD FOR BENTNESS TESTING OF BINARY 
FUNCTIONS 

An outline of the proposed method for the bentness testing 
of binary functions is given as Algorithm 1. 

 
Algorithm 1   Bentness testing 
1: binary function function 
2: Bent testing of the first Walsh coefficient, if failed go to 

the step  
3: Bent testing of the last Walsh coefficient, if failed go to 

 
4: Bent testing of the middle Walsh coefficient, if failed go 

 
5: Transition from truth vector to Walsh spectrum using the 

fast Walsh transform. 
6: Bent testing of all Walsh coefficients, if failed go to the 

 
7: Return bent function found. 

 
 
Note that in previous version of bentness testing methods 

, the conditional testing was done using the first, 
second, and last coefficient of the Walsh spectrum. The reason 
for this is that the first, middle and last Walsh coefficient have  
simple formula for calculation and also the implementation is 
easy.  

The proposed method, using results from statistical analysis 
of the values of Walsh coefficients, made correction in 
previous approach in step 2. Instead of calculation and 
conditional testing of the second Walsh coefficient, now the 
method uses calculation and conditional testing of the last 
Walsh coefficient. 
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V. EXPERIMENTAL RESULTS  

In this section, the proposed method for bentness testing will 
be experimentally tested within algorithm for discovering of 
bent functions with predefined number of non-zero 
coefficients in Reed-Muller domain. A short outline of the 
algorithm for discovering bent functions in the RM domain is 
given as Algorithm 2. The “Bentness testing“ algorithm is 
given as Algorithm 1 within previous section. 
  

Algorithm 2   Discovery of bent function in RM domain 
1: Set the number of function variables n and the number of 

non-zero RM coefficients 
2: Random generation of the possible non-zero coeficients 

in the RM spectrum.  
3: Conversion of the random RM spectrum to the binary 

vector by using the fast RM transform algorithm. 
4: If the “Bentness testing” of binary vector is not 

successful, then go to step 1.   
5: Obtain a bent function. 

 
In this paper, the same algorithm for discovering of bent 
functions in Reed-Muller domain is implemented with 
standard bentness testing algorithm and also it is implemented 
with the proposed bentness testing algorithm which is derived 
form statistical analysis of Walsh coefficients. Experimental 
results compare the number of discovered functions for the 
predefined number of non-zero coefficients in RM spectrum. 
Comparison of these numbers is motivated by increasing the 
number of discovered bent function when the proposed 
method is used. Note that discovering of bent function is 
faster when the number of non-zero coefficients is small.  

For experimental purposes, it is developed C++ 
implementation of Algorithms 1 and 2. The computations are 
performed on an Intel i7 CPU at 3.66 GHz with 12 GBs of 
RAM. 

Table 2 shows the total number of discovered functions per 
1 second for the predefined number of non-zero coefficients in 
RM domain for standard and proposed method. The data in 
tables are sorted in the increasing order of the number of non-
zero coefficients and the number of variables.  

It should be noticed that the number of discovered bent 
functions of , and 10 variables for proposed method is 
about 3% larger than using the standard method. Note that for 
the largest binary functions, experiments were not performed, 
due to very long CPU computation time. 

VI. CONCLUSION 

This paper proposes an efficient method for bentness 
testing of binary functions using statistical analysis of the 
values of Walsh coefficients of binary functions. The standard 
method for bentness testing before performing the fast Walsh 
transform calculations uses conditional testing of the initial set 
of particular Walsh coefficients. The selection of coefficients 
for conditional testing within standard methods is determined 
by complexity of calculations.  

TABLE II 
NUMBER OF DISCOVER FUNCTIONS PER 1 SECOND FOR STANDARD 

AND PROPOSED METHOD  

Num. of 
function  
variables 

Num of  
non-zero RM 
coefficients 

Number of discovered 
bent finctions per 1 s 

 
standard proposed 

6 10 650 671 
6 20 635 653 
6 30 627 644 

 10  0.712 
 20 0.553 0.564 

10 10 0.031 0.032 
10 20 0.035 0.036 

 
The conditional testing of the first, the second and the 

middle Walsh coefficients are exploited in the standard 
method for bentness testing. The statistical analysis shows that 
for conditional testing it is more efficient to use the last Walsh 
coefficient instead of the second. Experimental results 
confirm that exploiting proposed conditional testing can help 
to improve the computation performances by 3%.  
We can conclude that, when processing time is a critical 
parameter, the proposed method for bentness testing should be 
performed. Future work will be on improving other aspects of 
the methods for bentness testing.  
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