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Abstract – Reliability and duration of solid oxide fuel cells 
(SOFC) systems have still to be improved for the sake of more 
extensive commercialisation. Accurate parameter estimates of the 
SOFC dynamics are thus an important prerequisite for reliable 
on-line assessment of their internal condition. Apart from the 
conventional approaches that evaluate only point estimates, we 
suggest capturing the full information on the estimates i.e. their 
probability density functions.  The paper delivers assorted results 
of the experiments conducted on a short-stack solid oxide fuel cell 
system.
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I. INTRODUCTION

Solid-oxide fuel cell systems (SOFCs) are devices that 
perform the conversion of chemical energy of fuels into 
electrical energy and heat. SOFCs can operate on a broad power 
range from a few kW up to several hundred kW or even MW,
thus covering the needs of the residential and other stationary 
applications. The SOFC technology exhibits over 50% 
electrical efficiency (in less than 60% of cases), which is an 
advantage for integration into low-energy buildings. It is a 
trend for today's and tomorrow's construction where heat 
demand will decrease and the need for electricity increased. 

Although promising results have been achieved in the SOFC, 
the main problem for their commercial use remain its 
operational reliability and unsatisfactory life expectancy. Due 
to the high operating temperature (700-800 ° C), the systems 
are more complex and the problem is the installation of sensors 
to monitor the situation inside. As far as life expectancy is 
concerned, the Julich Development Center in December 2015 
achieved a world record of malt, which lasted 70,000 hours at 
an average degradation rate of 0.6% / 1000 hours of operation. 
The test was performed under laboratory conditions with a 
highly instrumented short fund (SS), while long-term tests on 
real systems on the field do not yet exist. 

A way to make SOFC technology more competitive on the 
market is to use techniques for early detection of injuries during 
the operation. Damage should be detected as soon as possible 
so that corrective measures can be taken in good time. The 
conventional approaches are electrochemical impedance 
spectra, relaxation time distribution (DRT), and evaluation of 
the equivalent circuit of the replacement model parameters 
(ECM). A change in the internal state of the cells, whether it is 
a degradation mechanism or a fault, affects the impedance 

curves and the associated parameters of the ECM circuits. 
Since SOFCs are characterized by eigenmodes on a broad 
range, meaningful characterization requires excitation from 

 to tens of . Classically, the system is successively 
probed with a sinusoidal current of the selected frequency and 
a small amplitude around the operating point in order to 
evaluate the impedance (Nyquist) curve from the amplitude and 
phase of current and the voltage. The problem is that low 
frequencies require a long time to perform. That significantly 
prolong the test, especially if a number of experiments have to 
be repeated at low frequencies. An additional problem is that 
during the long tests, the potential of the disturbances to spoil 
the results increases. 

Therefore, we proposed an approach that uses broadband 
excitation signals, i.e. pseudo-random binary noise (PRBS). 
From the complex wavelength analysis (CWT) of the input and 
output signals, it is possible to calculate the impedance 
characteristics of the system with resolution defined by the 
sampling rate. From impedance, the parameters of the 
equivalent circuit (ECM) are evaluated. Because it is about 
optimizing criterion functions that are poorly-conditioned, the 
evaluation process is done in two steps, first by using the 
genetic algorithm the most promising solution is found, and 
then using the simplex method to find the optimal in its vicinity. 
To find the distribution of the estimated parameters, the 
Markov Chain Monte Carlo  (MCMC) approach is used. 

The process was evaluated on a short 6-cell line of solid-
oxide fuel cells (SOFC) for a period of 3600 hours. The first 
results obtained on a short stack are presented. 

II. PRELIMINARIES

A. Data acquisition 

To evaluate electrochemical impedance spectra (EIS) requires 
voltage and current data. In the context of electrochemical 
energy systems, the highest frequency at which EIS is analysed 
is usually in the interval of 10kHz. Typically, multi-channel 
data acquisition systems offer interlaced sampling, which 
inevitably introduces error in the phase estimation. errors 
induced by the interlacing approach. 

 In order to guarantee a viable fit, the first step is to validate the 
correctness of the impedance data. For linear, causal and stable 
systems the impedance curve is a complex analytic function in 
the upper half-plane. For such functions, the real and imaginary 
part are linked through the so-called Kramers-Kronig (KK) 
relations [2].  Later Bode [3] was the first to successfully apply 
these relations to electrical impedances and since then it has 
become a basic tool for checking the validity of the obtained 
data. 
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The KK relations linking the real and imaginary components 
are: 

               (1) 

The relations (1) requires integration up to , which for finite 
length discrete measurements imposes inevitable error. A 
solution that circumvents this numerical calculation issue is 
provided by the so-called Z-HIT method [4]. The method 
allows calculation of the amplitude spectrum  from the 
phase spectrum  as: 

       (2) 

where  and .  Derivation 
was calculated using the Savitzky–Golay filter. The integration 
constant is determined by the least squares fit. An example of 
the performance of the  ZHIT test is shown in Fig.  1. 

Fig. 1. Comparison between measured modulus and modulus 
reconstructed from phase by using the ZHIT rule. The ZHIT test starts 
showing inconsistencies after cca. 5kHZ. 

B. Linearized SOFC dynamic model 

The model of the linearized SOFC system dynamics in complex 
space can be expressed by the transfer function

where  stands fpr fractional derivative. Starting from
measured input/output data, obtained during probing with the 
PRBS, the characterisation of the SOFC is performed by 
estimating the parameters of the model (3). This can be done 
either in the time domain by using the approach presented in
[5] or in the frequency domain. The latter option relies on the 
evaluation of the transfer function (3) after evaluating the 
complex wavelet transform of voltage and current [1]. For the 
sake of simplicity, in the sequel, we will stick to the second 
option. 

To capture the full information on the parameters it is necessary 
to set up the estimation problem in the probabilistic framework. 
By doing so, not only point estimates of the model parameters 
are obtained, but also their corresponding uncertainties. 
Uncertainties are much too often neglected in practice, 
however, they indirectly bear a valuable piece of information 
as a resultant of the quality of measurements, noise conditions, 
the importance of a parameter etc.  For that purpose, the 
Bayesian approach based on MCMC approach is adopted. 

III. BAYESIAN ESTIMATION OF THE
FRACTIONAL ORDER SYSTEM MODEL

The idea of a Bayesian approach is to fuse prior information 
on an unknown variable  with the information on that variable
contained in the data . 

Given a model and data , the posterior distribution of the 
unknown parameters  can be evaluated via the Bayes rule: 

where  is a likelihood,  is prior, and and 
 is called a marginal likelihood or model 

evidence. 

Selecting the model structure in Bayesian inference is the most 
crucial part of the modelling procedure. Since the model 
structure of the fuel cell impedance is well defined in the 
frequency space , one can easily construct the 
likelihood function: 

where we assume that measurement points  on the Nyquist 
curves are independent and that  s defined in the 
following way  

   
The parameter vector   contains the resistances , time 
constants and rational exponents  for each of the the

element in the ECM. In the above equation,  denotes the real 
part of the measured point on the Nyquist curve at a frequency 

, i.e. 

Note that, in order to estimate the parameters  in (3), only one 
component of the complex impedance is required, hence .
Due to the Kramers-Kronig relation, it is enough to consider 
only the information either in real or imaginary parts of the 
complex value. 

The prior probability of the parameter  is generally used 
to incorporate any prior knowledge about the modelled system. 
For the purposes of condition monitoring, it can incorporate 
knowledge about the model parameters from measurements 
that were done at some previous time instance e.g. at 
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commissioning of the system. In this work, without any prior 
knowledge, an un-informative truncated normal prior  
was used for the model parameters  and , since these 
parameters always take positive values.  On the other hand, 
uniform distribution was used as the prior parameters. 

Having specified the prior and the likelihood of the data, the 
posterior distribution of the model parameters can be inferred 
by employing (4). However, with complex models, the analytic 
solution for  is rarely possible due to the integral in the 
denominator. Readily, there are few options that resolve this 
issue by employing numerical methods. The integral can be 
solved by using grid approximation. However, this becomes 
computationally demanding with higher dimensions of the 
parameter space. On the other hand, the Markov Chain Monte 
Carlo (MCMC)  simulations can be used to sample directly 
from the posterior distribution without the need to evaluate 

. In such a case, only the proportional part of the 
equation (3) is required to be numerically tractable: 

  

More on MCMC methods and Bayesian inference can be found 
in [6]. The demonstration is available online to fully visualise 
the approach at the link https://chi-feng.github.io/mcmc-demo/

IV. EXPERIMENTAL RESULTS

C. The experiment in brief 

A SOLIDpower SOFC short stack operating at 750°C was 
used in the experiment. The stack consisted of six planar anode-
supported cells which were installed in an insulated ceramic 
housing. The active area of a single cell was 80 cm2. The SOFC 
short stack was fed with a mixture of hydrogen and nitrogen 
with a flow rate H2/N2=0.216/0.144 Nl h-11cm-2 whereas the air 
flow rate was 4 Nl h-11cm-2.  Stack was operated at a nominal 
current of 32 A (0.4 A cm-2) with fuel utilization FU=77.5 %. 
The experiment took 3600 hours. During this period,
characterization was automatically performed on a regular 
basis by employing both conventional sinusoidal excitation and 
PRBS waveforms excitation every 6 hours. Hence a dataset 
with voltage and current recordings acquired at 600 
measurement sessions is obtained. 

The stack was first run at nominal conditions for 240 h (40 
measurement sessions). After worming up, the first fuel 
starvation session was performed by gradually raising the fuel 
utilization (FU) stepwise each 24 h  starting from 77.5% up to
92.5% (Figure 2 event E2). This was done by decreasing H2
flow rate while keeping the current density constant. The 
second fuel starvation protocol was performed also at the same 
FU steps as in the first situation, but by keeping H2 flow rate 
constant while increasing the current density (Figure 5 event 
E3). The current was increased according to the following 
sequence 32 A, 34.06 A, 36.15 A, 38.2 A for each of the FU. 

Figure 1: Cell voltages during the experiment.

D. Results obtained on data from one measurement session 
on a single cell 

We will first demonstrate the application of Bayesian 
inference to the FOS parameter estimation on a single cell. 
Figure 3 shows the marginal posterior densities of model 
parameters. The first row shows three-time constants , the 
second row shows resistances , and the third row shows the 
fractional orders . Note that the last row displays only serial 
resistance. One can notice that the distributions of some of the 
parameters are far from normal. That is particularly the case for

, , , and .

E. Time evolution of the estimated parameters of cell #3 

We will now see how the parameters of the model of cell #3 
evolve over time. The time index refers to the measurement 
session. Yellow strips mark the intervals of too high fuel 
utilization.  

The increase of fuel utilization (events E2) causes the 
resistances  (related to the slowest mode ) and  to 
blow up (Fig.4). That can be seen also as blow up in the low-
frequency part of the Nyquist curve (not shown here). The 
estimates take unusual values also in cases of incident events 
like hydrogen supply shutdown (HSS1, HSS2) and power 
supply shutdown (PSS). The model reacts also to the migration 
of the equipment into another laboratory.  
The estimates of the parameters over time are not smooth but 
fluctuates (c.f. Figure 4). For instance, the estimates of  are 
relatively smooth while the estimates of  and  are rather 
"noisy". Moreover, note that the uncertainty region of the 
estimates ( ) is relatively narrow, meaning that the parameter 
estimation algorithm ends up with rather highly reliable
estimates. The explanation for such results should be sought in 
two limited quality of current sensor as well as fluctuations in 
fuel flows.

V. CONCLUSION

We presented a Bayesian approach to the parameter 
estimation of the linearized model of solid oxide fuel cell 
dynamics. From the change in the marginal pdf's from their 
reference forms, it will be possible to detect changes in the 
internal condition of the system.
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Figure 3: Results of the MCMC approach when applied to the data acquired during one measurement session on cell #3. The plots present the 
posterior distributions of model parameters from a model with  3 RQ elements. 
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Figure 4: An excerpt from evolution of the model parameters with 
focus on and  and .
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