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Abstract –The increasing usage of electric power in recent years 
has led to evolution of the existing electric grid infrastructure 
towards Smart Grid architecture. In this paper, we explore how 
state-of-art information and communication technologies can be 
combined to enable adaptivity within the Smart Grid relying on 
affordable IoT devices. As outcome, we propose an architecture 
and present some implementation and evaluation aspects.
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I. INTRODUCTION

In the previous century, the usage of electrical power has 
been one of the main key-enablers of rapid technological
progress [1]. However, the demand for electrical energy of 
today’s consumers is becoming much higher, while, on the 
other side, the availability of non-renewable resources is 
limited, pushing the traditional energy distribution systems to 
their limits [1-4]. In such conditions, the quality of the 
transferred power is dramatically affected that could lead to 
serious problems and even catastrophic results. Moreover, a 
constant pressure for switching to renewable, sustainable and 
cheaper energy resources exists. Therefore, there is a need for
evolution of the existing energy distribution systems and 
increase of their flexibility while making them adaptable.

In recent years, a lot of effort is being put in process of 
transformation of the existing energy distribution systems,
relying on state-of-the-art information and communication 
technologies, towards the so-called Smart Grid infrastructure.
Smart Grid is defined as a next generation power grid,
implemented as a two-way cyber-physical system with 
embedded computational intelligence, leveraging the collected 
information in order to provide clean, safe, secure, reliable, 
resilient, efficient, economic and sustainable electrical energy 
to end-users [1-5]. One of its main characteristics is the ability 
to detect the events that occur anywhere in the grid and react 
by adopting the corresponding strategy in order to respond the
changing demands or recover itself in case of anomalies, in near 
real-time.

In this paper, it is examined how the synergy of cutting-edge 
information and communication technologies and paradigms 
can enable adaptivity within Smart Grid relying on Internet of 
Things (IoT) devices. As an outcome, we propose an 
architecture leveraging the mentioned concepts and present
proof-of-concept implementation with some evaluation
aspects.

II. BACKGROUND AND RELATED WORK

Architecture model: In literature, many descriptions of Smart 
Grid infrastructure components and architecture model exist [3-
5]. However, some common elements are identified and we 
summarize them as follows in Table I.

TABLE I
SMART GRID COMPONENTS AND THEIR ROLES

Component Role
Energy 
subsystem

Power generation, transmission and 
distribution

Communication 
layer

Usage of wired and wireless 
communication technology to enable 
information exchange between 
components

Metering 
devices

Devices recording electrical and non-
electrical measurement values

Computational 
intelligence 

Knowledge extraction from the 
collected data and decisioning

Applications 
and services

Various software used by operators or 
consumers providing visualization, 
monitoring and/or control

Internet of Things (IoT): IT refers to a system of 
interconnected devices used in everyday life, residing in our 
environment with goal to perform the automation of a particular
domain – from healthcare and home appliances to military 
systems. These devices are equipped with different kinds of 
sensors and modules enabling them to collect certain type of 
information. Moreover, they can be equipped with actuators in 
order to be able to affect the environment as a response. In most 
cases, their processing power is quite limited and they often 
need to communicate with other devices (or servers) in order to 
achieve their goal. For communication, a variety of 
technologies is used, both short- (such as Bluetooth) and long-
range (Wi-Fi, 4G). It is identified that IoT has great potential in 
Smart Grid applications, as measurement and actuation devices
have to be distributed throughout residential and industrial 
objects in order to collect the necessary data and provide the 
response to the events that have occurred. IoT devices perfectly 
fit that purpose, considering their small size, affordability and 
connectivity [2].

Data analysis: In Smart Grids, it is necessary to analyze the 
enormous amount of data acquired by IoT and metering devices 
to extract knowledge and meaningful patterns in order to detect
or predict occurrence of particular events within the 
environment and react accordingly. For that purpose, various
data mining and machine learning techniques are leveraged. In 
most of the existing work, the focus of their application is on 
anomaly detection and load forecasting [3]. In these use cases, 
clustering, classification and regression are widely used, acting 
on various measurements beside electrical signals –
temperature, weather, rainfall and location data [3-7]. Anomaly 
detection is of particular importance in this context, as it
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provides the ability of discovering failures and malfunctions,
so Smart Grid can respond to fix them, making them self-
healing. In [4], a clustering algorithm together with association 
rule discovery was applied in order to detect anomalous events, 
such as overcurrent. On the other side, to optimize the demand 
scheduling, the accurate energy usage pattern of the consumers 
is essential. For that reason, the demand forecasting plays an 
important role. In [6] and [7], regression based on support 
vector machines was used for load forecasting.

Edge computing: Acquiring the data coming from IoT 
devices and their sensors is of utmost importance for monitoring 
and decisioning in Smart Grids. However, in this case, the 
traditional Cloud computing approach does not give satisfactory 
results, as offloading the enormous amount of data generated by 
IoT devices equipped with a variety of sensors to the Cloud for 
processing would introduce huge latency. On the other side, as 
Smart Grids grows, the number of connected IoT devices 
increases, introducing delay even further. As Smart Grid has to 
act to the environment changes and events in near real-time, 
such delay is intolerable [8, 9]. The idea of Edge computing is 
to move the computation and data processing closer to data 
sources, in order to enable faster response time [8]. For example, 
in [9], it has been shown that Smart Grid system monitoring 
performance can be increased up to 10 times by moving the 
computation closer to the location where the data was generated.

Semantic technology: The role of semantic technology is to 
encode the meaning of data separately from its content and 
application code. This way, it is enabled that both machines and 
people can understand the data, exchange it and perform 
reasoning. In context of semantic technologies, ontologies are 
used to describe the shared conceptualization of a particular 
domain. Semantic descriptions are stored within the triple 
stores. RDF is often used for the representation of semantic data 
within triple stores. It consists of classes, their properties and 
relationships expressed in forms of triplets (subject, predicate, 
object). SPARQL is a language used for querying the RDF 
semantic triple stores. By executing queries against the triple 
store, it is possible to retrieve the results that can be further used 
by reasoning mechanisms in order to infer new knowledge 
based on the existing facts. In IoT systems, semantic technology 
is used for various purposes. It is widely adopted in cases when 
it is needed to achieve interoperability of heterogeneous devices 
[10]. In [11], a lightweight semantic framework was used for 
semantic annotation of the results obtained by computer vision 
algorithms in order to enable reasoning about the events that 
occurred within IoT-based video surveillance system and act 
accordingly. In this paper, we want to adapt the similar approach 
to [11] within Smart Grid architecture.

Domain-specific language (DSL): It is a programming 
language specialized for solving problems from a particular 
application domain. If the considered problem belongs to target 
domain, that problem is solved more conveniently than using 
general purpose programming languages. Their notation could 
be textual or visual (within modeling tools). Domain-specific 
languages are being adopted in IoT systems in order to decrease 
cognitive load introduced by the device heterogeneity and 
complexity of the underlying infrastructure. The domain-
specific language scripts are further automatically translated to 
lower-level device-specific commands. For example, in [12], 
EDL domain specific language is used to describe the 
experiments carried out using robotic IoT devices. In context of 

Smart Grids, visual tools based on domain-specific languages 
would enable much more convenient control and management 
for operators. This way, the implementation of complex 
scenarios is enabled by eliminating the need to deal with in-
depth implementation details of the involved devices.

III. IMPLEMENTATION OVERVIEW

In this section, we propose Smart Grid architecture putting 
together the previously described technologies and present 
several aspects of system implementation. 

System architecture and working principles: The 
measurement of electrical quantities is performed by smart 
devices, referred to as Smart Meters. They can either be 
microcontrollers, low-power single-board computers (such as 
Raspberry Pi) or even smartphones (as in our case). The 
advantage of using smartphones is the availability of built-in 
sensors and inputs (such as audio jack). Moreover, their 
rechargeable batteries and wireless mobile network availability 
give the ability to use smartphone devices conveniently even in 
less accessible areas. After that, the collected data is analyzed 
relying on data mining and machine learning techniques. The 
obtained results are semantically annotated, so the semantic 
reasoning can be performed against them in order to draw 
conclusion about the events that occurred. According to these 
results the corresponding actions are taken in order to adapt the 
Smart Grid to current consumption demands. The adaptation 
plan can be specified by operators, using a visual modeling tool 
utilizing a domain-specific notation. Finally, the device-
specific commands are generated in order to respond to the 
changes detected in Smart Grid. The illustration of working 
principle is given in Fig. 1.

Fig. 1. Overview of automated adaptation process in Smart Grid

Android-based Smart meters: In [13], we have presented a 
method for acquiring electric measurement utilizing affordable
Android-based devices. Voltage and current signals are 
acquired via voltage and current transformers from the power 
grid and both converted into voltage signals, which are then 
scaled down further to audio signal levels using variable 
resistors. After that signal goes directly into the devices 3.5 mm 
audio jack. Since many Android based devices support stereo 
microphone input, it makes them an ideal two-channel 
measuring platform for power signals. Sound card of the device 
performs analog to digital (A/D) conversion, so the data can be
further processed by standard digital signal processing 

REASONING AND
COMMAND 

GENERATION

SEMANTIC 
KNOWLEDGE BASEDATA ANALYSISSENSOR DATA

SMART METERSGRID CONSUMERS

REGULATION AND 
CONTROL

ADAPTATION 
PLANSMART GRID 

OPERATORS

32

Ohrid, North Macedonia, 27-29 June 2019



methods, such as FFT-based algorithms. Moreover, it is useful
to also record other data coming from device, such as 
temperature, timestamp and location. The collected 
measurements are sent to Edge server, via MQTT (Message 
Queuing Telemetry Transport)1, a lightweight, publish-
subscribe-based ISO-standard messaging protocol, working on 
top of TCP/IP. The messages are sent as JSON-encoded string.
The smart measurement system is illustrated in Fig. 2.

MQTT

EDGE SERVER

Fig. 2. Android based smart measurement

Data analysis mechanisms: For implementation of data 
analysis mechanisms, we rely on TensorFlow2 for Python, an 
open-source library used for machine learning. We decide to 
use it, as it supports execution on GPU. Two mechanisms are
implemented: 1) anomaly detection based on classification 2) 
load forecasting based on regression. In the first case, the
training data contains voltage and frequency measurements 
with label (ok/anomaly), while in the second case it consists of 
average daily consumption (dependent variable) and average 
temperature (independent variable).

Semantic framework: A domain ontology (illustrated in Fig. 
3) is defined in order to semantically annotate the results 
obtained during the process of data analysis. This way, it is 
possible to draw conclusion about the events that occurred by 
executing SPARQL queries and interpreting their results. 
Different types of events are considered: device failure, voltage 
anomaly, idle state of the consumer device etc. Moreover, for 
each of the events, it can be defined which are possible actions 
that could be taken in order to react to detected events, such as 
voltage regulation, turning off the device, switching the device 
to power saving mode. 

Fig.3. Domain ontology describing control within Smart Grid

Visual modelling tool for grid operators: It was developed 
using Node-RED3 as a basis. It is an intuitive and extendable 
framework that is used for wiring together IoT devices, APIs 
and online services in novel ways, providing a browser-based 
editor with drag-and-drop user interface using the wide range of 
modeling elements (nodes). The domain-specific notation 
within the tool is described by a metamodel shown in Fig. 4. A
model of a modeling language which defines the structure and 
constraints for a family of models. In this paper, it is used to 

1 http://mqtt.org/
2 https://www.tensorflow.org

define a set of actions that need to be taken over the target 
devices in order to adapt Smart Grid to the environment changes
when pre-defined environment conditions (related to the change 
that occurs) are satisfied. The conditions could be either some 
specific events or relational expressions with respect to a given 
pre-defined threshold.

Fig. 4. Adaptation plan metamodel given in UML notation

Reasoning and command generation: It is performed 
according to the algorithm shown in Listing I as pseudo-code.
Each condition from the adaptation plan is translated to 
SPARQL query and executed against the semantic knowledge 
base. If it returns results, then the corresponding code is 
generated and appended to the command script.

LISTING I
CODE GENERATION ALGORITHM

IV. EVALUATION AND RESULTS

In this section, we present experimental results achieved 
utilizing the described framework from two different 
perspectives. First, we consider the accuracy of anomaly 
detection and load forecasting mechanisms. Moreover, the 
adaptability responsiveness of the implemented system is 
analyzed considering the processing time necessary for each 
step. The evaluation was performed on a server equipped with 
AMD Ryzen 7 1700X octa-core CPU running at 3.80GHz, 
64GB of DDR4 RAM and NVIDIA Quadro P2000 GPU with 
4GB of VRAM.

In Table II and Table III, the achieved results using the 
presented approach for anomaly detection and load forecasting 
implemented using TensorFlow are given. As it can be noticed 

3 https://nodered.org/

Input: sensor measurements, adaptation plan
Output: commands
Steps:
1. Retrieve all the adaptation rules from the adaptation plan;
2. Analyze sensor data;
3. Semantically annotate results;
4. For each of the adaptation rules
5. If(condition is true)
6.     then generate command targeting adaptation_rule.targetDeviceId;
7. end for each
8. end
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observing the achieved results, both data analysis mechanisms
have satisfactory performance in cases of different training/test 
set ratios, performing better in case of larger training sets.

TABLE II
ANOMALY DETECTION RESULTS

Training set size Test set size Correct/Test 
size [%]

75 150 89,93
100 150 92,58
125 150 95,17

TABLE III
LOAD FORECASTING RESULTS

Training set size Test set size Relative error 
[%]

75 150 13,51
100 150 12,89
125 150 12,21

In Table IV, an overview of the achieved processing times
for data analysis and code generation are shown for various 
cases of adaptation plan length (in number of rules) and 
consumer devices involved. Each rule targets a distinct device, 
while data analysis was performed for measurements collected 
during 300 seconds. For data analysis, the processing times for
anomaly detection considering both the CPU and GPU 
execution are provided (70% training, 30% test set). According 
to the results, the time spent for data analysis increases with 
larger number of devices involved, as more devices generate 
larger amount of data. Moreover, the time needed for code 
generation also increases, as number of SPARQL queries that 
will be executed during the code generation process depends on 
number of adaptation rules involved. Another observation is 
that the code generation time for the same number of rules may 
vary, as it depends on number of adaptation rule conditions that 
are true, so the commands will be generated only then, as in the 
second and third case shown in Table IV. Finally, the execution 
of anomaly detection is up to 3 times faster when executed on 
GPU, instead of CPU, while the speed-up increases with 
amount of data, which is beneficial when adaptivity has to be 
performed in near real-time for huge number of devices.

TABLE IV
PROCESSING TIME OVERVIEW

Number 
of rules

Data analysis 
(CPU) [s]

Data analysis 
(GPU) [s]

Code 
generation[s]

1 1,74 0,93 1,62
2 2,68 1,06 2,44
2 2,64 1,09 1,91
3 3,71 1,24 3,08

V. CONCLUSION AND FUTURE WORK

In this paper, the enabler technologies for enabling adaptivity 
in IoT-based Smart Grid architecture were discussed and some 

implementation and evaluation aspects presented. It can be 
concluded that IoT-based technology has huge potential in this 
use case. While the achieved results in case of anomaly 
detection are comparable to a similar solution [4], the load 
forecasting performs slightly worse compared to [6, 7]. It can 
be concluded that more data was needed for training in case of 
load forecasting. However, our plan is to further work on the 
implementation, considering the adoption on Big Data 
technologies, evaluation on larger data sets, optimization of 
real-time performance, security and evaluation of various 
implementation variants.
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