

493

Abstract--Web applications are becoming very complex and
composite, therefore it’s necessary to adopt a methodology or a
model of proceeding, which will guide designers through process
of application development with hope that the risk of abortion of
the project will be reduced, to simplify composite cloth and
generally to ameliorate finite result. Extreme programming
model of development, composed from good concepts, can be
adopting for Web applications, also for the others software’s
systems.

Keywords—Extreme programming, Web application, the
model of software development, Cascade model

I. INTRODUCTION

Web applications are becoming more and more popular.
This is in part due to the rapid deployment of the tools and
technologies for developing them. The process of developing
of the Web application is often simple: a developer built
application, in browser he adduced how the application looks
like, then he offer the application to publicity. In the industry
of software most of professionals will be agree that those
informal methods are good only for small projects on which
works only one programmer and for which is expecting that
in the future will not demand circumstantially observance.
Because of that, there are many problems of Web application,
which realized by informal methods. The programs, which
made without any plan, comprise the complicate program’s
logic, which is very difficult to preserve.

Developers made mistake when they develop Web
applications, because they attend on the selection of the tools
the most, whilst they does not attend on the process of the
development of Web application a lot. Current development
environments make it so easy to produce simple web
applications that they have the unfortunate side effect of
encouraging the developer to develop and evolve applications
in the absence of serious analysis and design. Web
applications are no longer simple. They have evolved into
complex and mission-critical systems. Today, building a
feature-rich Web application requires a team of developers
and a strong development process. Therefore, developers
should adopt a model of proceeding, which describe the
different phases of development, in order to avoid leastwise
those primary difficulties at developing application. Then, the

V. M. Milićević, is with the Faculty of Electronic Engineering, University

of Niš, Beogradska 14, 18000 Niš, Yugoslavia (telephone: 381-18-529-524, e-
mail: valentina@elfak.ni.ac.yu).

developer of the project can accomplish each step precisely
and he can be sure that he accomplishes every step on the
proper way, using defined line of march all the time and
documentation. Ideal model of proceeding for building Web
application enable to developer to perceive complexity of
application, to decrease risk of failure of the project, to
struggle with certainly modifications during developing of the
project and to deliver application very fast.

In recent years, Extreme Programming (XP), which will be
describing in this paper, has been advocated as an appropriate
programming method for the high-speed, volatile world of
Internet and Web software development. XP can be
characterized as a "lightweight" or "agile" methodology. Also,
XP represent discipline of software development based on
simplicity, high-band-width communication, feedback, and
courage. This model maintains adequate method for very fast
Web applications development, which represent very
important factor. If developers use this model of development
software, then customer will receive desirable application for
beforehand deadline. Using this model, it can be decrease risk
of the project abortion.

II. EXTREME PROGRAMMING MODEL DESCRIPTION
Extreme Programming (XP) represents important approach

in software development, which contains the collection of
principles and activities, which procure the designing of
secure and quality software [1,2,3]. This model is based on
fast development and delivery of application to customer,
planning and constant testing. XP look attention on
development project with risk. If customer requires software
delivery until deadline, the risk will grow. XP has goal to
alleviate risk and aggrandize probability of project issu. This
application development model has designed for small
programmer teams.

An XP approach emphasizes customer involvement and
testing. Customer from the beginning participates with XP
developers’ team in developing of project.

In XP, the basic partition rule is on customer and
programmer. Customer and programmer are in the same team,
but they have to retrieve different decisions. This division of
labor helps keep the whole team on track by making the
consequences of decisions visible. The costumer has to see
what he gets, while the programmer has to define price of
building application. This show up in who gets to make which
decisions. The customer gets to decide: scope (what the

Using Extreme Programming for Web
Applications Development

Valentina M. Milićević

494

494

system must do); priority (what is the most important);
composition of releases (what must be in a release to be
useful) and dates of releases (when the release is needed). The
programmers get to decide: estimated time to add a feature;
technical consequences (programmers explain the
consequences of technical choices, but the customer makes
the decision); process (how the team will work) and detailed
schedule (within an iteration).

The XP project development has three phases:
1. Release planning phase, where the customer writes

stories, the programmers estimate them, and the customer
chooses the order in which stories will be developed;

2. Iteration phase, where the customer writes tests and
answers questions, while the programmers program;

3. Release phase, where the Programmers install the
software, and the customer approves the result.

Figure Fig. 1. shows the process of XP model [2]. During
the release planning phase, and all along the way after that,
the developers will seek an effective metaphor that helps
guide their solutions. The team adopts system metaphor. This
helps orient developers when they are trying to understand the
functionality at the highest levels. Members of the team
define the names for the objects of problem and relationships
between them. The metaphor may change over time as
developers learn more about the system, and as they get
inspired in their understanding of it. A release is a version of a
system with enough new features that it can be delivered to
users outside the development group. The goal of release
planning is to help the customer identify the features of the
software they want, to give the programmers a chance to
explore the technology and make estimates, and to provide a
sense of the overall schedule for everybody.

next
iteration

tests

new user story

latest
versionbugs

release
plan

customer stories
like requirements

requirementsmetaphor

architectual
spike

customer
approval

small
releases

release
planning

iteration

acceptance
tests

Fig. 1. Phases of the software devolopment by XP model

The release planning has two phases: exploration phase
(fig. 2) and planning phase.

The customer writes a story, which is simplier then
classical writting of documents with specification of
requirements. When customer write a story, he has not to give
any technical detail. Basis on story, the programmer has to
define deadline of the release. When the programmer starts to
implement a story, he will contact the customer to get more
details of the story. The customer has to writting a story
carefully, because the story must be testable. The customer
has to specify the tests (later on), so they should have in mind
some mechanism by which to test it. In the case that the story
is too big, the customer has to split a story. In the case that the
programmer does not know how to implement a story, he has
to spike a story. The team has the opportunity to do spikes:
quick throw-away explorations into the nature of a potential
solution. Based on the stories and the spikes, developers
decide on an approach to the system’s structure. The
developers can past on the planning phase after the story
builds. Exploring will be done when customer cover the
whole demands with stories.

Write a story

Estimate a story
(programmer)

Split a story
(customer)

Spike a story
(programmer)

planning

“don’t know how”“too big”

Fig. 2. Exploration phase

In the planning phase, developers plan releases of some
versions of application. Customer need to sort stories by
value, from most to least valuable, or at least labeled high,
medium, or low. After that, programmers classify stories by
risk (optional, like high, medium, or low) and declare the
velocity. Declare the velocity, that is, how many story points
the customer should expect per fixed-length iteration. After
declaring the velocity, the customer has to choose scope and
stories for the next release. To judge how long the
development effort should take, it has to divide the total story
point estimates by the velocity. For the first release, the
stories must exercise the whole system end-to-end, even if at
a minimal level. At this way, developers procure release plan
of the system and, after that, they can traverse on the iteration
phase.

The goal of iteration planning is to take the stories a team
plans to implement in this iteration (the stories currently most
valuable to the customer), break those stories into smaller
tasks, and assign programmers to work on the tasks. Iterations
are of a fixed length. Iterations are time-boxed: if the team
cannot get everything done, they will drop features rather than
slip the deadline of the iteration. At the end of each iteration,
developers should expect to see the system ready to deliver,

495

495

running the acceptance tests for the stories they have chosen.
On the first day of each iteration, the team will decide which
stories to focus on. The iteration plan will identify what tasks
will be done, and who will do them. The team accomplished
some number of story points in the previous iteration. The
stories do not have to be in the order they were in the release
plan; the customer can request them in whatever order they
like. In fact, the customer may introduce new stories if they
are willing to give the team time to estimate them. In iteration
it can be implement just those stories which were planed for
that iteration. When the iteration is finished, developers have
to deliver that version of system, like results of that iteration.
This version of the system can be test, after iteration phase,
whereby for each iteration phase the tests need to be create.
The tests are creating basis on the story of customer. For each
story, a test can be creating. After testing, customer analyzing
results of tests. Stories, which are not show the positive
results on the testing, have to be return in iteration phase on
implementation over again or on the removing bugs from
beforehand implementation. After realization and testing,
customer has to approve delivery of application, wherewith
the process of designing and realization is done.

XP can be summarized by twelve practices [1, 2, 3]. Although
many other practices can be considered part of XP, but these
twelve are the basic sets:
• Metaphor enables the better communication between
members of development team and guides all development
with simple shared stories of how the whole system works.
XP encourages stories, which are the brief descriptions of
system task. Metaphor expresses the evolving project vision
that defines the system's scope and purpose, helps in
generating of new apprehensions of the problem and system,
and helps directly to the architecture of system.
• Planning Game encompasses requirements definition and
project planning. Customer defines application features with
stories. Programmers prioritize the stories and schedule the
most important and difficult for the next iteration. Only the
programmers who work on a story may estimate how much
time it will take to complete. Tackling the most difficult tasks
first is to reduce the overall risk associated with the project.
• Small releases containing the most valuable business
requirements are used to build the system. Releases should be
delivered very often so customers get to see and touch the
working product on a regular basis.
• Simple Design focuses on delivering a system that meets the
customer's immediate needs - no more and no less.
• Testing is continuous. Programmers write unit tests to
validate correct operation of modules before they write
functional code for the module under development.
Customers then write system tests to demonstrate that
requirements have been satisfied.
• Refactoring is the process of restructuring the system to
remove duplication, simplify code and add flexibility without
changing how the code operates.
• Pair programming is the practice of having two people working
together on all production code. They do this as full partners, taking

turns typing and watching, to provide constant design and code
review. This is the most controversial aspect of XP.
• Collective ownership, which lets any programmer change
any code in the system at any time, is similar to open source
programming. This approach is markedly different from
traditional methods in which a single developer owns a set of
code. XP proponents argue that the more people who work on
a piece, the fewer bugs will occur.
• Continuous integration is a day-to-day activity. Code is
integrated and test after a few hours or a day at the most.
Integration of one set of changes at a time simplifies the
integration process and makes it obvious who is responsible
for fixing the code when integration tests fail. Continual
regression testing means no regressions in functionality as a
result of changed requirements.
• Forty-hour workweeks are highly encouraged on XP
projects. Having rested, motivated developers boost
productivity.
• On-site customer is a designated person who works with the
team and is available to answer questions, resolve issues and
set priorities. The customer, after all, is the final arbiter of
system acceptance. This customer representative remains with
the development team throughout the project.
• Coding standards are a mandated requirement, not a set of
guidelines. Programmers follow common rules so all code in
the system looks as one person wrote it. Create code standards
that work for team and consistently apply them.

III. THE OTHER MODELS FOR WEB APPLICATION
DEVELOPMENT

Model which can also be used for Web application
development is Cascade model or Waterfall model, which is
shown at fig. 3 [4]. The model starts with planning phase,
then proceeds on the designing phase, then on realization and
testing and finished with keeping phase. Mention phases
represent separate steps, but proceed from one in another
phase has not always been explicitly emphatic. Furthermore,
sometimes there is need to repeat some steps, if the project
has been changed. If designer practice this model, then he can
planning everything beforehand. That is the biggest weakness
of this model. The second demerit of this model is that the all
phases are partly overlapped. Every phase influences as on
anterior thus on subsequent phase, while some of them need
to be repeated. Cascade model do not withstand big
modifications. However, this model for Web application
development is popular, because of it’s understanding and
applicable.

496

496

Problem definition/
Conception elaborating

Requirements analysis/
Specification

Making of prototype
design

Prototype realization
and check

Integration and system
checking

Publishing and keeping

Fig. 3. Cascade Model
The important characteristic of this model is it’s beforehand

planning. However, because of need to pass all steps, many
designers haste thought earlier phases of model and finished
with repeat some steps. This model does not maintain too
explorations, because of what in whole proposition can be
introduced unnecessary risk. Maybe it’s possible to amend
designing in the case of longer moderation on the primordial
phases. The model, which more times reversion on the same
development phase, is Cascade Model with Swirl, which is
shown at fig. 4. This model is good at projects developing,
which comprehend many unknown factors.

Problem definition/
Conception elaborating

Requirements analysis/
Specification

Making of prototype
design

Realization and several
testing

Integration and system
checking

Publishing and keeping

Swirl risk analysis

Fig. 4. Cascade Model with Swirl Risk Analysis

IV. EXTREME PROGRAMMING FROM A CASCADE MODEL
PERSPECTIVE

The values of XP should be captured in any modern
software project, even if the implementation may differ
radically in other environments. Communication and
simplicity may be stated in other terms (coordination and
elegance, for example), but without them non-trivial projects
face almost insurmountable odds.

To the phases problem definition, apropos conception
elaborating, and requirements analysis, apropos specification,
correspond release planning phase of model XP. Good feature

of model XP is strong definition of the problem and analyzes
of customer’s requirements in release planning phase.
Communication and simplicity are fundamental factors of XP
model. Obscurities eliminate at the specification of requirements,
because the customers are always accessible to the
programmers. At this way, that remove the possibility that the
customers get application like they does not want, what is not
represent in Cascade model.

Function of XP model is to increase flexibility of the
strategy of the project. XP looks attention on developing of
the projects with certainly risk. Using this model, it can be
decrease risk of the project abortion and increase possibility
of project success, what is not case in Cascade model.
Cascade model does not maintain too explorations, because of
what the whole project can be introduced to unnecessary risk.

Substantially deference between these two models is in the
prototyping phase. Phases making of prototype design and
realization and check have not their double in XP model,
because the XP do not maintain prototype making. Model XP
maintain parts of system creating based on customers stories,
which will be pooled and integrated in system (iteration
phase).

Integration and system checking of the Cascade model
correspond iteration phase of the model XP in which
customer writes tests and where the checking is occur. After
every story implementation in XP, there is need to integrate
story in system and to check system and implemented story.

As a system becomes larger, some XP practices become
more difficult to implement. As projects becoming larger,
emphasizing a good architectural “philosophy” becomes
increasingly critical to project success. Multi-discipline teams
are also problematic since XP is aimed at software-only
projects.

Basic objection on using model XP at the developing Web
applications is that XP implies management and organization
infrastructure, until more focuses on the processes of software
engineering and technical work.

V. CONCLUSION
Using traditional approach at the developing Web

applications, often missing some features and the quality is
not as customers expecting for. Deficiencies of traditional
model of software development are solving in XP model.

XP has to use in any project based on Web, and in any
modern software project. Most of XP consists of good
practices that should be thoughtfully considered for any
environment.

REFERENCES
[1] William C. Wake, “Extreme Programming Explored”, 2000.
[2] James D. Wells, “Extreme Programming: A gentle

introduction”, www.ExtremeProgramming.org, 2001.
[3] Gordon Benett, “Extreme Programming (XP) Holds Promise

For Intranet Development “,
intranetjournal.com/articles/200110/gb_10_10_01a.html

[4] Thomas A. Powell, “Web design: The Complete Reference”,
The McGraw-Hill Companies, 2000.

	Back to IT session
	Main menu

