

497

XML Application Development
using UML

Goran Lj. Janackovic1 and Zvonko R. Milosevic2

Abstract- XML Schema has richer structure and semantics
that can be expressed as compared to DTD, but it is also more
complex. Resulting schemas are difficult to share with users and
business partners. UML is standard for system specification and
design, effective for specifying vocabularies and sharing
definitions with users. These two previously mentioned standards
are complementary, and can work together, as it is shown in this
paper.

Keywords – XML Schema, UML, Development Process.

I. INTRODUCTION

For a large system problem need to be divided and
conquered as a set of alternate models and views, each of
them ignores some irrelevant aspects of the system. Different
stakeholder groups have different needs with respect to
abstraction level [1].

Simplified UML activity diagram for schema development
process is shown in Fig. 1.

DEFINE
TERMS

DEFINE
RELATIONSHIPS

DEFINE
CONSTRAINTS

Orientation?

Human Partic ipation?

Data Integrat ion?

DEFINE
INTEGRATION

ANALYSE HUMAN
EFFECTS

[y]

[n]

[y]
[n]

Fig. 1. UML Activity diagram for schema development process

1Goran Lj. Janackovic is with the Faculty of Occupational Safety,
Carnojevica 10a, 18000 Nis, Yugoslavia, E-mail: jagor@ptt.yu

2Zvonko R. Milosevic is with the Faculty of Electronic Engineering,
Beogradska 14, 18000 Nis, Yugoslavia, E-mail: zvonko@ptt.yu

It includes three decision points that determine the final
definition, regardless of which schema language is used [2]. A
data-oriented system can be optimized for serialization of
objects or database query results and its constraints are
connected to the data-types and referential integrity
constraints of its sources. These documents may never be
viewed by humans, other than by developers testing the
application.

A text-oriented vocabulary often has human users who need
to edit the XML documents, with the assistance of GUI
editing tools. Its structure must be easily understood by people
who write stylesheets that transform and present the
documents' content.

II. XML CONCEPTUAL MODEL

UML class diagrams can be applied to a larger XML
vocabulary design, and multi-schema support [3]. The
purchase order vocabulary is defined in two modules,
corresponding to the core PurchaseOrder type and a separate
reusable Address module specification. In UML, these
modules are called packages. The first package specification
is shown as a UML class diagram in Fig. 2. The
PurchaseOrder class has two attributes and three associations
that define its structure. Several of these attributes include a
multiplicity specification of [0..1], which means that those
attribute values are optional, either 0 or 1 occurrences.

It em
productNum : SK
productName : string
quantity : QType
price : decimal
sendDat e [0.. 1] : date

+items 0..*
+sendTo

PurchaseOrder
orderDate[0..1] : date
otherInfo[0..1] : string

Address
name : string
street : s tr ing
city : string
postC ode : integer

+payFrom

1 1

Fig. 2. Conceptual model of purchase order vocabulary

The Address class plays a sendTo and payFrom role in

association with a PurchaseOrder. The multiplicity of 1 means
that a PurchaseOrder must have exactly one of each address
role. On the Item class, a quantity is of type QType. This type
is defined as another class in the UML model. In the same

498

diagram, QType is defined as a subclass of positiveInteger,
which is coming from the XSD_Datatypes package in this
UML model. Thus, a quantity is a specialized kind of positive
integer.

III. DESIGN MODELS OF XML SCHEMAS

According to the schema development process illustrated in
Fig. 1, the purchase order vocabulary is data-oriented. The
remaining design decisions relate to deployment issues:
developer conventions for using XML attributes or child
elements, data type alignment with other sources and
destinations of data to be exchanged using this vocabulary,
and anticipated future requirements for extending this
vocabulary or combining it with other XML namespaces.

If this were a text-oriented application, then content
managers and authors would have further input on design
choices. In is prefered the XML document structures that
avoids excessive use of container elements to group related
content elements, and the order of elements in a document
important to human authors and readers.

IV. MAPPING UML MODELS TO XML SCHEMA

By using UML to capture a conceptual model, it is possible
to clarify the essential terms and relationships. A primary goal
guiding the specification of this mapping is to allow sufficient
flexibility to encompass most schema design requirements,
while retaining a smooth transition from the conceptual
vocabulary model to its detailed design and generation. A
related goal is to allow a valid XML schema to be
automatically generated from any UML class diagram, even if
the modeller has no familiarity with the XML schema syntax,
enabling a rapid development process and reuse in different
deployment languages or environments.

A class in UML defines a complex data structure and
associated behavior that maps to a complex type in XSD. As a
first step, the PurchaseOrder class and its UML attributes
produce the following XML Schema definition:

<xs:complexType name="PurchaseOrder">
 <xs:all>
 <xs:element name="orderDate" type="xs:date"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="otherInfo" type="xs:string"
 minOccurs="0" maxOccurs="1"/>
 </xs:all>
</xs:complexType>

An XSD <xs:all> element is used to create an unordered
model group. A UML class creates a distinct namespace for
its attribute names. Both of UML attributes are optional, and
mapped to minOccurs and maxOccurs attributes in the XSD.
The UML attributes are defined using primitive data types
from the XSD specification, so these are written directly to the
generated schema using the appropriate namespace prefix. If
other data types are used in the UML model, then an XSD
type library can be created to define these types for use in a
schema.

The PurchaseOrder type is specified by its UML attributes
and by its associations to other classes in the model. Fig. 1
includes three associations that originate at PurchaseOrder,
which is designated by navigation arrows at the opposite ends.
Each association has a role name and multiplicity that
specifies how the target class is related. These associations are
added to the model group of the XSD complexType along
with the elements created from the UML attributes.

The ability to include stereotypes is an integral part of the
UML standard and is used to specify additional model
characteristics that are unique to XML schema design. Using
the stereotype, the schema generator knows to create the
following definition for SK:

<xs:simpleType name="SK">
 <xs:annotation>
 <xs:documentation>SK is a special code
 for identifying every product </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:pattern value="\d{8}"/>
 </xs:restriction>
</xs:simpleType>

A UML model may also include documentation for any of
its model elements, which is passed through to the XML
schema definition as shown in this example. The UML
generalization relationship indicates which existing simple
datatype should be used as the base for this user-defined type.
A fundamental and pervasive concept in object-oriented
analysis and design is generalization from one class to
another. The specialized subclass inherits attributes and
associations from all of its parent classes. This is easily
represented in W3C XML Schema, although it requires more
indirect mechanisms when producing other XML schema
languages.

V. UML PROFILE FOR XML SCHEMA

UML provides a foundation for modeling structure and
behavior of most software systems, but there are domain-
specific situations that require additional model information to
be captured by the analyst beyond what is possible with UML
[4]. This issue is solved through the use of UML extension
profiles. A UML profile has three key items: stereotypes,
tagged values (properties), and constraints. A profile provides
a definition of these items and explains how they extend the
UML in a particular domain, which is XML schema design in
our case.

Three stereotypes are introduced here along with a value
properties, each of them assigned to one or more UML
constructs. Each stereotype can be further specified by adding
one or more properties that refine its meaning or impact on a
model. A stereotype assigned to a UML class extends the
meaning of a "class" within the profile's domain and the
stereotype's properties are added to the specification of that
class in the model. Three stereotypes from the UML Profile
for XML Schema are summarized as follows:

499

<<XSDcomplexType>> on a UML class
• modelGroup (all | sequence | choice)
• attributeMapping (element | attribute)
• roleMapping (element | attribute)
• elementNameMapping (upperCamelCase |

lowerCamelCase | hypenLowerCase | omitElement)

<<XSDelement>> on a UML attribute or association end
• position (integer value) within a sequence model

group
• anonymousType (true | false)
• anonymousRole (true | false)

<<XSDattribute>> on a UML attribute or association end
• use (prohibited | optional | required | fixed)

Other stereotypes can be used to modify the meaning of

those structures in the XML schema without specifying
additional properties [5]. After applying these profile
extensions, the following schema is produced for the
PurchaseOrder class and its associations:

<xs:element name="purchaseOrder" type="ipo:PurchaseOrder"/>
<xs:complexType name="PurchaseOrder">
 <xs:sequence>
 <xs:element name="sendTo" type="ipo:Address"/>
 <xs:element name="payFrom" type="ipo:Address"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"

maxOccurs="1"/>
 <xs:element name="items" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ipo:item" minOccurs="0"

maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="orderDate" type="xs:date"/>
</xs:complexType>

The use of a sequence model group raises a new issue when
mapping from UML to XML schemas. UML attributes and
associations are inherently unordered within their owning
class. So each UML attribute and association end that is part
of a sequence group must be annotated with a profile property
that specifies its position. These position property values are
shown as annotations in Fig. 1. The procedure for adding
profile stereotypes and property values is different in each
UML tool, although any tool that claims compliance with the
UML specification must provide some means for adding
them.

Because the items role on the association to the Item class
is not specified as an anonymousType, its definition in the
schema shown above retains the role's container element to
hold elements for the related class. The document instance for
purchase order items is as follows:

<ipo:purchaseOrder>
 <ipo:items>
 <ipo:item partNum="23251">

 <ipo:productName>C# Unleashed</ipo:productName>
 <ipo:quantity>1</ipo:quantity>
 <ipo:YuPrice>5000,00</ipo:YuPrice>
 <ipo:comment>Simply the best!</ipo:comment>
 <ipo:shipDate>2002-15-04</ipo:shipDate>
 </ipo:item>
 </ipo:items>
</ipo:purchaseOrder>

In the class diagram, if an association end is marked as an
anonymousType, then the name of the associated class is
anonymous when its instances appear in XML documents,
regardless of which schema language is actually used to
define those documents. The concept of anonymous types is
realized differently in different schema languages.

There is an difference between the XML document
elements for purchaseOrder and item appear with a lower-case
first character, but the default mapping from UML creates
these element names equal to the class names, which begin
with upper-case letters, commonly used in object-oriented
models and languages.

This issue can be resolved by adding an property to a UML
class along with the appropriate stereotype. This profile
property allows an XML schema designer to choose a
preferred naming convention when modeling the schema
details. Like many other profile properties, this value can be
set as a default for the entire model so that all class names will
be mapped to XML element names in the same way.

VI. SCHEMA MODULARITY AND REUSE

One of the benefits gained by using UML as part of our
XML development process is that it enables a thoughtful
approach to modular, maintainable, reusable application
components. UML includes package and namespace
structures for making these modules explicit and also
specifying dependencies between them.

When used in a schema definition, each package produces a
separate schema file. The implementation of dependencies
varies among alternative schema languages. For DTDs they
might become external entity references. For the W3C XML
Schema, these package dependencies create either <include>
or <import> elements, based on whether or not the target
namespaces of related packages are equal. A dependency is
shown from the PO package to the XSD_Datatypes package,
but an import element is not created because this datatype
library is inherently available as part of the XML Schema
language.

This object-oriented approach to XML schema design
facilitates modular reuse, just as one would do when using
languages such as Java or C++. A new vocabulary module
could import current Address package and define a new
subclass of Address or further specialize adresses with a new
subclass. For example, BusinessAddress might be created
with a new attribute. When transformed to XML Schema, this
new subtype would automatically become available as valid
content for the sendTo or payFrom elements in a
purchaseOrder.

This is conceptually similar to the way one would create a
new Java subclass within a new application-specific package;

500

other libraries are reused by importing, and possibly
extending, their classes.

VII. SUCCESSFUL APPLICATION DEVELOPMENT

In the following paragraphs are presented some ideas to
enable better e-business project development.

• Plan for conceptual models of developed system that
are reusable in several different deployment contexts,
i.e. W3C XML Schema, DTD, relational DBMS,
Java or EJB, or for using in standard and also web
applications. Alternative UML profiles can be used
to transform the common business model to
alternative platforms. Full realization of this goal is
beyond the capabilities of many current UML tools.

• Pre-existing UML models might be specialized to
their deployment platform, platform libraries, and
datatypes (Java, .NET, etc.). Isolate the platform
independent domain model to enable its reuse and to
generate XML schemas for data interchange.

• Use consistent modeling guidelines for naming and
structure, both within a single vocabulary and across
a set of related models. It is necessary to use some
architecture specification that provides clear
guidelines for writing DTDs that are easily
transferred to UML models using some previously
mentioned transformation rules or any other object-
oriented framework.

The following list summarizes several goals that guide

XML application development work [6].
• It is necessary to create a valid XML schema from

any UML class structure model, as previosly
described in this paper.

• Refine the conceptual model to a design model
specialized for XML schema by adding stereotypes
and properties that are based on a customization
profile for UML.

• Support a bi-directional mapping between UML and
XSD, including reverse engineering existing XML
schemas into UML models.

• Design and deploy XML vocabularies by assembling
reusable modules.

• Integrate XML and non-XML information models in
UML; to represent, for example, both XML schemas
and relational database schemas in a larger system.

The previous introduction to a UML profile for XML adds

a critical step toward all of these goals. These extensions to
UML allow schema designers to satisfy specific architectural
and deployment requirements, analogous to physical database
design in a RDBMS. The same extensions are necessary when
reverse engineering existing schemas into UML because we
must map arbitrary schema structures into an object-oriented

model. In most cases, a few well-defined stereotypes and
properties will achieve major design objectives.

VIII. CONCLUSION

The default mapping rules described in this paper can be
used to generate a complete XML schema from any UML
class diagram. This might be application model that now must
be deployed within an XML web services architecture, or it
might be a new XML model intended as a data interchange
standard. The default schema provides a usable first iteration
that can be immediately used in an initial application
deployment, although it may require refinement to meet other
architectural and design requirements.

Text-oriented schemas, and any other schema that might be
authored by humans and used as content for HTML portals,
often must be refined to simplify the XML document
structure.

Stereotypes and their associated property values are part of
a UML profile for XML Schemas. Using stereotypes one can
customize the generated schema. A web-based tool that
implements the complete UML profile for schema design and
transforms any UML class model to a W3C XML Schema can
be developed using these transformation rules.

To support an iterative modeling process, it is easy to
developed a web application that creates XML schemas from
UML models. A key enabling technology is the XML
Metadata Interchange (XMI) specification from the OMG that
defines a standard for serializing UML models as XML
documents. Many UML tools now support this standard
import-export format, and some use it as their native file
format.

The Microsoft .NET framework is becoming well known
for its integration of XML into nearly all data-manipulation
tasks, and using possibility to develop XML code from UML
specification of system elements will unify the whole
development process.

REFERENCES

[1] A. Bergholz, “Extending Your Markup: An XML Tutorial”,
IEEE Internet Computing, pp. 74-79, July/Aug. 2000.

[2] R. Khare, A. Rifkin, “XML: A Door to Automated Web
Applications”, IEEE Internet Computing,pp. 79-87, July/Aug.
1997.

[3] Elisa Bertino, Elena Ferrari, “XML and Data Integration”, IEEE
Internet Computing, pp. 75-76, Nov/Dec. 2001.

[4] D. Connolly and J. Bosak, “Extensible Markup Language
(XML)”, 1997.
http://www.w3.org/XML/

[5] B. Box, “The XML Data Model,” 1997.
http://www.w3.org/XML/ Datamodel.html

[6] D. Carlson, Modeling XML applications with UML, Addison-
Wesley, 2001.

	Back to IT session
	Main menu

