

501

Scalable Vector Graphics – XML Solutions for
Designing Visual Components in a Web Age

Zvonko R. Milosevic1 and Goran Janackovic2

Abstract - SVG (Scalable Vector Graphic) is an open-standard

vector graphics language that lets you design Web pages with
high-resolution graphics including such sophisticated elements as
gradients, embedded fonts, transparency, animation, and filter
effects, using plain text commands. The Scalable Vector Graphic
format is based on XML.

Keywords - SVG, Scalable Vector Graphic, XML.

I. INTRODUCTION
The need to display quantitative data stored in XML files is

quite common, even when transforming the most basic
documents [1]. For example, consider the following cases:

• Number and type of hits registered in a server log;
• Percentage of sales by an individual on an annual

sales report;
• Number of technical books vs. the total book count

in a book list (almost every XML book in the world
has that example);

II. WHAT IS SVG?

SVG is a language for describing two-dimensional graphics
in XML. SVG allows for three types of graphic objects: vector
graphic shapes (paths consisting of straight lines and curves),
images and text [2]. Graphical objects can be grouped, styled,
transformed and composited into previously rendered objects.
Text can be in any XML namespace suitable to the
appplication, which enhances searchability and accessibility
of the SVG graphics. The feature set includes nested
transformations, clipping paths, alpha masks, filter effects,
template objects and extensibility. SVG drawings can be
dynamic and interactive. The Document Object Model
(DOM) for SVG, which includes the full XML DOM, allows
for straightforward and efficient vector graphics animation via
scripting. A rich set of event handlers such as onmouseover
and onclick can be assigned to any SVG graphical object [3].
Because of its compatibility and leveraging of other Web
standards, features like scripting can be done on SVG
elements and other XML elements from different namespaces
simultaneously within the same Web page.

1Zvonko R. Milosevic is with the Faculty of Electronic
Engineering, Beogradska 14, 18000 Nis, Yugoslavia, E-mail:
zvonko@ptt.yu

2Goran Lj. Janackovic is with the Faculty of Occupational Safety,
Carnojevica 10a, 18000 Nis, Yugoslavia, E-mail: jagor@ptt.yu

There are many advantages of using SVG as the following
short feature list demonstrates:

• Scalable Server Solutions
• Compatibility with other mediums such as

wireless devices
• Small file sizes for faster Web page downloads
• Zoomable graphics and images
• Scripting control for custom interactive events

and animation
• Clean, high-resolution printing from Web browsers
• Text-based format easily integrates with other

Web technologies
• Built in International Language Support
• Reduced Maintenance Costs
• Easily Updated

III. SVG MAIN FEATURES

Flash and SVG are often compared because the two have
similar features. The reality is that SVG has some distinct
advantages over its main competitor Flash. Perhaps chief
among them is the compliance with other standards. SVG can
utilize CSS and the DOM, where as Flash relies on proprietary
technology that is not open source, at least not in the sense that
we can right click on the page and see what is happening
behind the scenes. SVG by contrast is open source and
developers can readily learn from other developer's efforts in
this area. While SVG has not yet reached the popularity level
of Flash, times are changing quickly. Mozilla plans to fully
support SVG, Microsoft has similar plans, and Adobe GoLive
5 also supports SVG. Additionally, SVG editors are now
surfacing on the Web.

There are however some drawbacks and one of the major
drawbacks at the moment is that no browser fully supports
SVG currently. As a consequence, SVG has to be displayed
through the use of a plug-in such as the Adobe SVG plug-in.
While it is a good plug-in it does not currently support all the
SVG specifications, it is a heavy download, and perhaps the
biggest barrier is that it is CPU intensive. Still, despite these
drawbacks it does allow for cross-browser implementation of
SVG and the use of the plug-in is likely to increase
dramatically in the years to come.

Essentially, SVG is a bridge between design and
programming because unlike traditional methods of creating
graphics, graphics in SVG are created through a programming
language. This programming language is XML based and
consequently integrates well with other W3C standards such as
the DOM. A good way to think of SVG is to think of the

502

browser as being a blank canvas that is defined by a multitude
of x and y points. Each point in the canvas can then be utilized
to create a shape via a mathematical formula. For example,
absolute positioning of CSS layers uses a mathematical
equation that allows developers to position a layer where they
would like, by assigning left and top property values. Many of
the equations used by SVG work on these same underlying
principles.

SVG is much like a vector based graphics program; with the
exception that it is void of a graphical program interface that
one may typically associate with the creation of images.
Instead, vector images are created through text based
commands that are formatted to comply with XML
specifications. In this instance, the code is literally the art, and
the brush used to paint the art is XML based. SVG can display
24 bit color with the additional benefit of producing lower
weight graphics. The graphics produced by SVG don't lose any
quality if they are zoomed or resized. Best of all every element
and every attribute of an element can be animated. These are
compelling reasons to utilize SVG.

Integrating an SVG is free, and we use Adobe’s plug-in.
This is an early release of the next version of the Adobe SVG
Viewer, which adds support for more of the W3C's SVG
Recommendations. The Adobe SVG Viewer now supports
external as well as inline and embedded style sheets. Adobe
Illustrator 9.0 automatically exports SVG images with
embedded styles, but you can easily design your SVG to work
with external style sheets, just like with HTML. Additional
arguments are the reference to the SVG file, and the pixel
dimensions of the object in the browser page. The Adobe SVG
viewer supports US-ASCII, ISO-8859-1, UTF-16, and UTF-8
encodings. To display the characters, the correct font needs to
be installed, using a small "CEF" font so that anyone can view
the SVG - even if they don't have the font installed.

Conventions have it that SVG files are saved with an .svg
extension, and .svgz if compressed for better delivery through
Web servers. Of course you are technically free to choose any
file name you like. ".svgz" is the appropriate designation for
.svg files that have been compressed with "GZIP". Adobe SVG
Viewer decompresses .svgz files automatically with no
significant difference in performance. When someone uses
.svgz files on its site, it is necessary to set the mime type for it
as well in the Web server.

IV. SVG DOCUMENT STRUCTURE

There are a couple of ways SVG can be defined in a Web
document: as a standalone SVG page, as an embedded
element, or it can be utilized in an XHTML document with a
namespace declaration [3]. Let us begin by taking a look at the
standalone example:

1. <?xml version="1.0" standalone="no"?>
2. <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
 "http://www.w3.org/TR/2001/REC-SVG-
20010904/DTD/svg10.dtd">
3. <svg width="100" height="100" x="0" y="0">
4. <!—User defined SVG content -->
5. </svg>

Since SVG is an application of XML it must include the
initial XML declaration. SVG must be identified by a standard
set of rules. These rules are stored in a separate document
called a Document Type Declaration or DTD and is utilized to
validate the accuracy of the SVG document structure [4]. The
purpose of a DTD is to describe in precise terms the language
and syntax allowed in SVG. The <svg> tag denotes to the
browser that this is a SVG document. The canvas of the SVG
document is defined by the width and height properties. For
example, increasing width and height to 500 respectively
increases the size of the canvas where the content will be
contained. Not defining the width and the height properties
cause the SVG canvas to fill the browser dimensions. The x
and y properties denote where the canvas will be placed in the
browser window. The x property equates to the top position of
the browser and the y property equates to the left position of
the browser. All the SVG content is placed between the <svg>
</svg> tags. Since SVG is an application of XML, all tags
must be closed. The </svg> tag closes the document.

This method, while useful for providing standalone
examples, has some shortcomings particularly in regard to
search engine placement. There is a provision for Meta tags in
the SVG specifications, but since SVG is XML based most of
the popular search engines will not pick up a standalone SVG
page. RDF enabled search engines will however pick up SVG.

Nonetheless, for most of us, being listed by search engines is
important and to overcome this problem we can use a
combination of HTML/XHTML and SVG. SVG can be also
embeded within a HTML or XHTML document by using the
following structure:

1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN">
2. <html>
3. <head>
4. <title>SVG</title>
5. </head>
6. <body>
7. <object data="test.svg" width="500" height="500"
type="image/svg+xml">
8. <embed src="test.svg" width="500" height="500"
type="image/svg+xml" />
9. </object>
10. </body>
11. </html>

The document is a straightforward HTML document. The
important tags in the above example are the object and embed
tags. If we wanted to adhere strictly to standards based coding
then we would only use the object tag, but using this tag only
causes the SVG file to not appear in Netscape version
browsers. As a consequence it is best to use both the object and
embed tags or just the embed tag. Lines 7 through 9 contain
the appropriate object and embed tags. It is important to note
that the object tag uses the data property to specify the url of
the SVG document while the embed tag employs the src
property.

One of the benefits of utilizing this method is that it is able
to combine the advantages of HTML and XHTML with SVG.

503

For example, the chances of your pages being picked up by
search engines are considerably enhanced when employing a
mixture of HTML / XHTML and SVG. It is also easier to
integrate sound and music capabilities utilizing this method
(note: The Adobe plug-in provides support for MP3 format and
WAV files). There is another way to allow SVG to be
displayed by browsers and that is through the use of XML
namespaces.

V. GRAPHICS STRUCTURE

Similar to most vector drawing packages, SVG has some
predefined basic shapes that can be utilized by developers.
These shapes are elements, much like a table can be an element
of a HTML document [3]. The following shape elements are
defined by the SVG specifications:

• Rectangle <rect>
• Circle <circle>
• Ellipse <ellipse>
• Line <line>
• Polyline <polyline>
• Polygon <polygon>

The <rect> tag allows for the drawing of a rectangle and

variations of a rectangle shape, for example squares and
rectangles or squares with rounded corners. For example, a
basic rectangle shape can be created by the following code:

 <rect x="80" y="53" width="189" height="52"
 style="fill:rgb(39,44,231);
 stroke:rgb(0,0,128);
 stroke-width:1"/>

The tag begins by first declaring the <rect> tag and then
declaring The style declaration allows developers to define
CSS properties that are supported by the SVG
recommendations. There are quite a number of CSS properties
specific to SVG. The fill property (fill:rgb(39,44,231);) defines
the fill color of the rectangle; in this particular instance rgb
format is used to express the color. SVG also allows for the
expression of colors by using named or hexadecimal color
formats as such: fill: red or fill: #ffff00. The stroke property
provides Web developers with a mechanism to create an
outline for a rectangle. In SVG it is assumed that an outline
does not have any width. In other words the width of an outline
is set to 0 by default. This is true of all SVG shapes and as a
consequence if an outline is needed it needs to be defined by
using the following syntax: stroke:rgb(0,0,128); which defines
the color to be used for the stroke. stroke-width:1 defines the
width of the outline. Increasing the width value to 5 intuitively
would produce a larger outline.

The opacity property demonstrates a very important facet of
SVG, which often is not immediately noticed. It is not only the
element itself that can be altered, but its sub-components as
well - which makes them ideally suited to dynamic
manipulation.

Another way of thinking about this is by comparing it to
Flash. In Flash you have the ability to alter a symbol's

transparency and color values, but in order to achieve the same
effect in Flash, each of a rectangle's strokes must be converted
to symbols as well as the fill itself, thereby increasing the file
size of the movie. In SVG the same effect is achieved with
minimal code and consequently does not greatly impact the file
size. There is, however, the ability to do far more than create
basic lines in the SVG specifications.

VI. FILTER EFFECTS

In SVG there exists the ability to add effects directly to
shapes and text. The best way to think of filters is to think of
the filters used by a graphics editing and creation program like
Adobe Photoshop or Macromedia Fireworks. In these
programs one has the option to apply a Drop Shadow effect or
Gaussian Blur effect on a graphic. SVG has the same
capabilities, thus bringing with it the same features typically
associated with bitmap images (gif, jpg, png, etc). Filter effects
can consist of any combination of the above. In other words it
is possible to use multiple filters on a vector image. It easy to
realize the many possible permutations involved when using
filter effects.

An SVG filter effect must be nested within the <defs>
element. The <defs> tag is short for definitions, and, as the
name suggests, its purpose is to allow for the definition of
special elements, such as a filter. The filter itself is defined
through the <filter> tag. A requirement of the filter tag is that it
also must contain an id attribute. With SVG filters, the id
attribute is used to identify which filter will be applied to the
graphic.

The purpose of giving a filter a unique id is then to be able
to use that same filter repeatedly on many elements. In other
words, the <filter id="Gaussian_Blur1"> acts as a template that
can be repeatedly used throughout a SVG document. To apply
the filter to an element an xlink is used. An xlink is just an
expression used in SVG that is the equivalent of a link in
HTML e.g., . In fact the syntax to link to other
files at another url is very similar to HTML and should not
present too many problems. To link the element to a filter, the
filter:url(#Gaussian_Blur1) property is used. The # character
must be used when linking back to the filter's id. Linking is an
important concept to understand in SVG as it will save many
hours of repetitive coding and development.

VII. GRADIENTS

One of the most visually appealing facets of SVG comes
through its ability to create gradients. A gradient is a smooth
transition from one color to the next. In addition, several color
transitions can be applied to the element making for some
striking effects.

There are two main types of gradients available to SVG [3].
These are:

• Linear Gradients
• Radial Gradients

Linear gradients can be defined as horizontal, vertical or
angular gradients. As is the case with all SVG elements, style
attributes such as opacity can be applied to gradients. The

504

other type of gradient allowed in SVG is the radial gradient.
The tag to define a radial gradient is <radialGradient> and like
the <linearGradient> tag it also must be nested within the
<defs> tag.

VIII. SVG FILE PROTECTION

Today, developers have tried to lock SVG files in a number
of ways. Locking out the "show source" menu does not
provide true security, because any file on the Web that can be
seen by your browser can be downloaded to a machine. From
there, opening an unencrypted file with any text editor is
routine. Some developers might rely on legal protections.
Others will look upon SVG as they do with HTML or
JavaScript.

There are clearly some instances where people will want, or
need to have, some form of Digital Rights Management
(DRM). There are a variety of possible schemes for providing
DRM for SVG files.

IX. CONCLUSION

The use of XSLT and SVG opens up exciting new ground
for the presentation of XML data on the Web [5]. The correct
use of these tools may improve vastly the quality and quantity
of information your users can consume, as well as your
process to present and create it. The creation of good visual
representations of XML data using XSLT is governed by
principles and best practices both on the programming and
technical graphic design sides. In this article we have
examined a few of them while providing an illustration of
their implementation. There are a few tips for using SVG:
• Try to maximize space/information ratio, since the best

graphics use fewer pixels to express more data.
• Create reusable graphic templates by induction. Start with

a prototype of what you want to do in plain SVG, then
create a basic XSLT template, possibly tightly coupled
with the rest of the stylesheet, finally, and only if it is
general enough, factorize into a reusable library.

• Try to provide representations that truthfully represent the
nature and dimension of your input. Don't use n-
dimensional representations for m-dimensional data
(variations would be deceiving).

• Use the possibilities of SVG to elegantly escape
"flatland". Transparencies, JavaScript tool tips, and
dynamic insertion of elements are great tools to allow
several layers of information to coexist without cluttering.
Using these tools is harder than overloading your graph
or using disruptive mechanisms like alert boxes, but the

extra effort on your part will be reflected on the quality
and usefulness of your graphic and surely appreciated by
your clients.

SVG is a new graphical file format, based on XML, that
flexibly incorporates vector graphics, bitmap graphics, text
and style sheets. It's "scalable" in more than just the sense that
the incorporated graphics can be scaled. It's also scalable in its
flexibility. Because it's XML-based, SVG can be mixed with
other formats — such as XHTML — and scripting languages
— such as JavaScript. Entire Web pages or individual
components such as graphics could be rendered with SVG.

The very presence of a format for vector graphics on the
Web is significant. For all its promise as a graphical user
interface and publishing medium, the Web has relied too
heavily on bitmap graphical formats such as GIF and JPG.
Bitmaps have inherent limitations; they tend to be static and
difficult to reuse, and they often need to be optimized for the
particular screen resolution of the displaying device. As a
result, most Web sites are laden with single-use graphic files,
and graphics are seldom used to personalize the presentation
of material. Moreover, with the growth of non-PC devices
such as PDAs and cell phones, the limitations of heavy
bitmaps become even more pronounced.

The vector images that already exist on the Web largely
have been rendered as Macromedia Flash illustrations and
animations. Yet for all the, well, "flash" of Macromedia's
authoring tools, the format has never proliferated all that
widely. Internet Explorer has included support for its own
vector format, VML. The compelling thing is that SVG is an
entirely open, textual format. It can be easily generated from a
database for applications such as dynamic page serving. The
obvious solution is an open standard that can be created by
many tools.

REFERENCES

[1] Randall M. Rohrer and Edward Swing, “Web-Based
Information Visualization”, IEEE Computer Graphics and
Applications, pp. 52-59, July/Aug. 1997.

[2] L. Wood, “Programming the WEB”, IEEE Internet Computing,
pp. 48-54, Jan/Feb 1999.

WEB REFERENCES

[3] SVG 1.0 W3C Recommendation , 2001.
www.w3c.org

[4] SVG DTDs W3c Recommendation, 2001.
www.w3c.org

[5] C.M. Sperberg- McQueen, XML-related Activities, 2001.
www.xml.com

	Back to IT session
	Main menu

