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Direct Detection Receiver Decision Statistics in Optically 
Amplified Communication Systems 

 
Ivan B. Djordjevic and Bane V. Vasic 

 
 Abstract-- An approach for finding the exact direct detection 
receiver decision statistics (that is the probability density 
function at the decision circuit input) is proposed. It is 
independent on optical and electrical filter choice, pulse shape 
and on modulation scheme. The additive noise composed of the 
amplifier spontaneous emission, multi-path interference and 
other additive noise sources is modeled as a stationary process 
with an arbitrary autocorrelation function. The comparison with 
the Gaussian approximation of decision statistics is given and 
various aspects of the application of the proposed method in long 
haul-haul systems are discussed. 
 
Index Terms-- Optically amplified communication systems, Direct 
detection receiver statistics, Statistical communication theory 
 

I. INTRODUCTION 
 

Additive white Gaussian noise (AWGN) is commonly used to 
describe the amplifier spontaneous emission (ASE) noise [1-
5], [11-12]. In contrast to terrestrial communication links, a 
typical undersea fiber communications system operates at a 
signal power below 0 dBm (even less than -3 dBm) per 
channel for Nx10 Gb/s systems, with relatively short 
amplifiers spacing (less then 45 km) and properly chosen 
dispersion compensated fiber pairs to minimize the influence 
of the fiber nonlinearities and dispersion [1]. The validity of 
the AWGN fiber channel model in considering ASE noise was 
confirmed for such applications through experiments [1]. 
However, in most terrestrial optical communication systems 
the AWGN assumption is not completely accurate. For 
example in terrestrial long-haul wavelength division 
multiplexing (WDM) systems, due to the interaction of fiber 
nonlinearities and dispersion, the WDM carriers can act as a 
set of pumps, and the amplifier spontaneous emission (ASE) 
noise spectral components can be selectively amplified. In 
other words the noise enhancement is much higher in certain 
spectral regions. This gain introduced by these effects is 
known as a parametric gain [5]. In this case the ASE noise is 
neither white nor Gaussian. Moreover, an optical filter colors 
the white (ASE) noise in every amplifier stage, even in the 
absence of parametric gain. Apart from ASE noise, in long-
haul communication systems, especially those with Raman 
amplifiers, multipath interference (MPI) becomes an 
important factor in performance degradation. In a Raman 
amplifier based long-haul communications MPI is even more 
important factor in performance degradation. Due to the fact 
that double Rayleigh-back scattering (DRBS), which is a main 
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source of MPI, occurs in an optical fiber due to small 
inhomogeneities or microscopic variations in the refractive 
index, that reflections may occur on splices and poor 
connectors [6] and the fact that these sources are independent 
of each other, MPI can be modeled as a stationary Gaussian 
process with an autocorrelation function determined from the 
measured power spectral density (PSD) function. 

Therefore, in order to characterize the receiver performance 
and to design an optimal receiver it is of great importance to 
determine the statistics of samples at the input of the decision 
device. In this paper we tackle the problem of determining 
such statistics in the presence of colored Gaussian noise at the 
receiver input and in the presence of intersymbol interference 
(ISI) caused by filtering. A number of models were proposed 
recently [2-5].  Unfortunately, all these models lack 
generality. They are either restricted to a specific modulation 
scheme or applicable to a narrow class of optical/electrical 
filters. Some of them do not even consider the influence of 
optical filter [11-12]. The problem of properly modeling of 
direct detection receiver is still an open issue. 
 Although the formal procedure for finding the decision 
statistics is well-known [4-5], [7] the probability density 
function (PDF) of decision statistics has been determined only 
a rectangular/Lorentzian optical filter transfer function and for 
integrate-and-dump electrical filter [4]. 
 We propose a universal method to determine the decision 
statistics independent of the optical and electrical filter choice, 
the pulse shape or modulation scheme. The ASE noise is 
modeled as a stationary process with an arbitrary 
autocorrelation function. The model takes into account the 
intersymbol interference as well. The proposed method is also 
applicable to other types of additive noises that accompany 
the ASE noise, such as multi-path interference. To compare 
the proposed method for finding PDF with frequently used 
Gaussian approximation of decision statistics, we use the 
skewness and the kurtosis coefficients, defined in [8-10]. The 
proposed method is illustrated for the case when the optical 
filter is modeled as a super-Gaussian filter and the electrical 
filter is modeled as a Gaussian filter. In this case the PDF of 
decision statistics can be determined in a closed form. 

 

II. MODEL DESCRIPTION 
 

A typical direct detection receiver, which follows an amplifier 
chain, consists of a polarization filter, an optical filter, a 
photodiode, an electrical filter, a sampler and a decision 
circuit, as shown in Fig.1. The electrical field in fiber at the 
optical filter input can be written as 
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Fig. 1 Block scheme of receiver following an amplifier chain 

 
where s(t) is the ouput of the chain of (optical) amplifiers, 
pn(t) is the nth bit pulse shape, P the peak power,  and bn is the 
user symbol { }1,rbn ∈ , with r being the extintion ratio, 

10 <≤ r . The additive noise component n(t) is assumed to 
be a zero-mean wide sense stationary (ASE, MPI, etc.) with 
the autocorrelation function ( )τnR . r(t), s(t) and pn(t) are in 
fact the complex envelopes of corresponding analytical 
signals [4-5], [7].  
 Let h1(t) and h2(t) be optical filter and electrical filter 
impulse responses, respectively. h2(t)  can be considered as 
the impulse response of whole receiver electronics, while 
h1(t), as an inverse Fourier transform of the demultiplexer 
(e.g., the  AWG) transfer function of the observed channel. 
Since the optical filter is a linear susbsystem, there is no 
interaction between signal and noise, and both optical filter 
output signal S(t) and noise N(t) can be written as a 
convolution of the impulse response and corresponding filter 
input, that is 
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 The electrical filter output I(t) is a convolution of the 
photodiode current i(t)  

( ) ( ) ( ) 2tNtSti +=                        (3) 
and the electrical filter impulse response h2(t) 
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(Photodiode responsivity is omitted without loss of 
generality). 
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is the kernel of the transformation (filtering-photodetection-
filtering). As ( ) ( )vuKuvK ,, =∗  the kernel is symmetric. 
Furthermore, since the kernel is continuous, it can be 
expanded into a series using orthogonal functions 
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where iλ  and ( )xiφ  are the eigenvalues and eigenfunctions 
satisfying the following equaiton 

( ) ( ) ( ) { }vuxdyyyxKx iii ,,, ∈φλ=φ ∫
∞

∞−

.    (7) 

Note that we use the inverse kernel definition for relation (6) 
[7]. Substituting (6) into (4) the electrical filter output 
becomes 
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where 
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A set of the orthonormalized functions is chosen in such a 
way that the coefficients ni are uncorrelated [7], i.e., 

( ) ( )02
1 ni Rnm = , with m1 being the first-order moment of 

the noise process [7]. 
 Following the similar procedure described in [4-5], [7], we 
can write the characteristic function of the electrical filter 
output signal as follows 
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 The natural logarithm of the characteristic function can be 
expanded using Taylor series formula 
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 where the coefficients in the expansion are  
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( ) ( )vuK n , , the nth order kernel, is defined iteratively by 
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 Finally, the probability density function of decision 
statistics w(x) can be found using the following definition 
expression 

( ) ( )∫
∞
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= dxjjCxw I ]exp[
2
1 .          (14) 

 Although the derivation of the model is certainly not 
straightforward, it is conceptually very simple. The difficulties 
arise only in numerical calculations of certain integrals. 

If the optical filter is modeled as a super-Gaussian 
filter, and electrical filter modeled as a Gaussian filter, and 
NRZ signals are observed, the coefficient of Taylor expansion 
can be determined in a closed form 
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where B1 is the equivalent optical filter bandwidth 

( ) ωω= ∫
∞

∞−

djHB 2
11 ,                         (16) 

with ( )ωjH1  being the optical filter transfer function. b is the 
equivalent electrical filter bandwidth  

( ) ωω= ∫
∞

djHB
0

2
22                         (17) 

over the equivalent optical filter bandwidth, with ( )ωjH 2  
being now the electrical filter transfer function. (Pav is the 
observed bit average optical power). 
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 Fig. 2. Probability density function of decision statistics for a space 
state bit 

 

III. NUMERICAL RESULTS 
 

To illustrate the proposed model, a PDF of the decision 
circuit input noise for a space-state bit is shown in Fig. 2. The 
curves in Fig. 2 are obtained under the assumption that the 

optical filter is modeled as a super-Gaussian filter, that the 
electrical filter is modeled as Gaussian and that the signal is 
NRZ. It is evident that for a space-state bit, the PDF curve is 
like Gaussian just as in the case when the ratio 12 /2 BBb =  
is close to zero (B2-electrical filter bandwidth, B1-optical filter 
bandwidth). 
 To assess the validity of Gaussian approximation of 
decision statistics, we define, similarly as in [8-10], the 
skewness (asymmetry coefficient) α and the kurtosis (flatness 
coefficient) β respectively as 

3
23 / MM=α    and   3/ 2

24 −=β MM ,      (18) 
where Mn is the central moment of the nth order [7]. The 
skewness describes the symmetry ( 0=α ) or asymmetry 
( 0≠α ) of PDF curve with respect to the center mass axis, 
while the kurtosis describes whether the PDF curve is more 
narrow with higher peak ( 0>β ) than Gaussian distribution 
( 0=β ) or vice versa ( 0<β ). The skewness and the 
kurtosis versus optical signal-to-noise ratio (OSNR, defined in 
B1 bandwidth) are shown in Figs. 3-4. For the mark-state bit 
and OSNR grater than 20 dB the flatness coefficient is close 
to zero for any electrical-filter bandwidth-to-optical filter 
bandwidth ratio (b), while the coefficient of asymmetry tends 
to zero only when b converges to zero. For the space-state bit 
the PDF is always different from Gaussian. Strictly speaking 
the decision statistics is never Gaussian.              
 For a typical the electrical filter bandwidth of 0.65 Rb (Rb is 
the bit rate) and optical filter bandwidth region (2Rb, 5Rb) the 
ratio 2B2/B1 is in an interval (0.26, 0.6) and the decision 
statistics is not Gaussian. 
 The cumulative distribution function for a mark-state bit for 
different values of ratio b is shown in Fig. 5, while the bit-
error rate is shown in Fig. 6. For the bit-error rate (BER) of 
10-12 and a typical value of ratio b = 0.6 the approximation 
error obtained when the exact PDF is approximated by 
Gaussian with the mean value and the standard deviation 
determined from exact PDF is 0.45 dB. 
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Fig. 4. Skewness and kurtosis for a mark-state bit 
 

40 45 50 55 60 65 70 75 80 85 90
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Mark-state bit:
OSNR = 15 dB, r = 13 dB

  b = 0.2
  b = 0.4
  b = 0.6

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n,

 C
D

F

x / Σ2
 

 

Fig. 5. Cumulative distribution function for a mark-state bit 
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Fig. 6. Bit-error rate vs. optical signal-to-noise ratio 
 
 
 
 

IV. CONCLUSION 
 

An advanced method to determine the exact decision 
statistics of direct detection receiver is proposed in this paper. 
It is independent of the choice of optical and electrical filters 
and independent of the modulation scheme. The ASE noise is 
modeled as a stationary process with the autocorrelation 
function that is obtained experimentally. The comparison with 
the Gaussian approximation of decision statistics is given and 
limits of its application are pointed out. The proposed method 
is also applicable for other type of additive noises that 
accompany the ASE noise, MPI in long-haul communications 
for example, that can be modeled as a stationary normal 
process with arbitrary autocorrelation function. 
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