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The Pulse Evolution Picture In The Presence 
 Of Interference 

Mihajlo C. Stefanovic1, Bratislav D. Stojanovic2, Milan S. Milosevic3 
 

Abstract – In this paper the determination results of the 
interference influence on a soliton evolution in optical fiber are 
shown. Both the interference and the signal are Gaussian pulses  
but at the different frequencies. Computations were conducted 
by solving the system of Nonlinear Differential Schrödingers 
Equations. The influence of different fiber parameters on the 
level of interference and its implication on basic signal are also 
discussed. It is evident that the parameter N is with a dominant 
influence. If one is increasing it, the propagation characteristics 
are getting worse. 
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I. INTRODUCTION 

 
In nowdays telecommunication systems, using the optical 

fibers as a good transmission medium is a reasonable need. 
However, optical fibers have very significant dispersion and 
nonlinearity that can be decreased with the appropriate pulse 
shape, namely soliton [1]. The optical system consists of  a 
transmitter, transmission medium and a receiver. Due to 
imperfection of the transmitter and a system of mirrors which 
are reflecting the beam into the optical fiber, there is a 
possibility of interference appearance as an unwonted pulse at 
the different frequency that interact with the useful signal. 

In this paper the case with two optical pulses which are 
propagating together into the single-mode fiber is considered. 
Generally, two optical fields can differ not only in its 
wavelenghts but also in their polarization states. Furthermore, 
polarization of each field can be changed during the 
propagation as a result of optically induced nonlinear 
birefringence. Here, the case in which the two optical fields at 
the different wavelenghts are linearly polarized along one of 
the axes of polarization-preserving fiber so that they maintain 
their polarization during propagation is given. 

The Cross-Phase Modulation (XPM) is always followed 
by the Self-Phase Modulation (SPM) and it is present because 
the effective refraction coefficient depends not only from 
intensity of that propagating wave but also from intensities of 
all other copropagating waves [2]. This paper considers the 
case where both the nonlinearity and dispersion occurs in the 
fiber and the influence of these two effects on the signal when 
one of them is dominant in the presence of the interference. 
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Different values of the fiber parameters, namely, dispersive or 
nonlinear lenght imply a different influence on the pulse 
propagation, it's shape and intensity, which then again 
influence on the probability error. This study results involve 
only the evolution pictures of a propagating pulse along the 
fiber. Fiber losses along the fiber are neglected with the 
assumption that they are very small. 

It is well known that the pulse propagation in an nonlinear 
dispersive medium, as the optical fiber is, can be described 
with the Schrödingers Partial Differential Equation. A 
solution of the system of Schrödingers equations gives the 
influence of interference on the useful signal as a result. 
System is normalized with the adequate normalization factors. 
This paper considers the pulse evolution picture along the 
optical fiber in case when the basic signal is at the frequency 
f1 and the interference is at the frequency f2. Solving of the 
system of the Schrödingers equations is conducted by using 
the well-known split-step Fourier method that finds the 
extensive usage in solving the problems with pulse 
propagation in nonlinear dispersive medium [3]. In a lot of 
studies it showed satisfactory accuracy. Although in general 
the dispersion and nonlinearity act together along the fiber, 
the split-step Fourier method gives an approximate solution 
by assuming that in propagating the optical field over a small 
distance h one can pretend that dispersive and nonlinear 
effects act independently. Hence, propagation from z to z+h is 
carried out in two steps that are: in the first step, nonlinearity 
acts alone and in the second step dispersion acts alone. That is 
why it is named a “split-step” method. Although the method is 
relatively straightforward to implement, it should be noted 
that it requires that the step size h along z and time 
discretization are selected carefully to maintain the required 
accuracy. 
 

II. DETERMINATION OF THE PULSE EVOLUTION 
PICTURE 

 

Propagation of two pulses at different frequencies is 
considered. One pulse represents the useful signal and the 
other one is interference. The determination begins with the 
common system of nonlinear Schrödinger equations defined 
like [3] 
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where γj is nonlinearity coefficient defined as 
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and Aeff represents the effective core area (typically 10-20 µm2 
in visible region), c is speed of light, ω1 and ω2 are the pulses 
central frequencies and n2=3,2×10–16cm2/W for silica fiber. 
Corresponding values for γ1 and γ2 are in 20-30 1/kmW range 
depending on ω1 and ω2. Both the useful signal and the 
interference are assumed to be a Gaussian pulses at the 
different frequencies. Both pulses have the same width and 
there is no initial time delay between them. Useful signal is 
described as  
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Normalization factors are introduced as 
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where T0 represents the pulse width. System (1) govern the 
evolution of pulses along the fiber by including nonlinear and 
dispersion effects, and if the fiber loss is neglected for 
simplicity, these equations become 
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and dispersive lenght LD, walk-off lenght LW, nonlinear lenght 
LNL and parameter N are defined as follows 
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In the second equation of system (5) ratio LD/LW can take 

positive or negative values that depends from the fact which 
pulse is faster which refers to the sign of coefficient d known 
as a walk-off parameter. One of the most important features of 
chromatic dispersion is that the pulses at different 
wavelenghts are propagating at different speeds inside the 
fiber due to mismatch of group velocities, which leads to 
walk-off effect that plays an important role in the description 
of the nonlinear phenomena involving two or more 
overlapping optical pulses [3,4]. As a matter of fact, the 
nonlinear interaction between two optical pulses stops when 
the faster moving pulse has completely walked through the 

slower moving pulse. The separation between these two 
pulses is governed by the walk-off parameter d defined by 
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where vg1 and vg2 represents the group velocities of the first 
and the second pulse, respectively. Losses in the optical fiber 
are neglected by the assumption that αjL<<1 for j=1,2 where L 
represents the fiber lenght. 

When the fiber lenght L is such that L<<LNL and L<<LD, 
neither dispersive nor nonlinear effects play a significant role 
during pulse propagation. In that case both nonlinear and 
dispersive terms can be neglected (it is assumed that the pulse 
has a smooth temporal profile so that ∂2U/∂τ2∼1). As a result, 
U(z,τ)=U(0,τ) so the pulse maintains its shape during 
propagation. The optical fiber plays a passive role in this 
regime and acts as mere transporter of optical pulses (with the 
exception of reducing the pulse energy because of fiber 
losses). This regime is useful for optical communication 
systems (Fig. 1). Parameters LD and LNL should be about 10 
times greater then L for distortion-free transmission [3]. 
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Fig 1. Pulse evolution picture for L<<LNL and L<<LD 

 
In the case of L<<LNL but L≥LD, nonlinearity is negligible 

compared to dispersion effect. The pulse propagation is 
governed by Group Velocity Dispersion (GVD) effect 
(dispersion is dominant) and nonlinear effect plays relatively 
negligible role. This is applicable whenever N2<<1. 

When the fiber lenght L is such that L<<LD but L≥LNL, the 
dispersion term becomes negligible comparing to a 
nonlinearity term (as long as the pulse has the smooth 
temporal profile). In that case pulse evolution in the optical 
fiber is governed by SPM that leads to spectral broadening of 
the pulse. This regime where nonlinearity dominates is 
applicable whenever N2>>1. This condition is mostly satisfied 
for relatively wide pulses (T0>100ps) with the peak power 
P0≥1W.  

When the optical fiber lenght L is longer or comparable to 
both LD and LNL, dispersion and nonlinearity acts together as 
the pulse propagates along the fiber. This mutual activity of 
SPM and GVD effects may lead to a qualitatively different 
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behavior compared with the expected from GVD or SPM 
alone. In anomalous-dispersion regime (β2<0), the fiber can 
support solitons, but in normal-dispersion regime (β2>0), the 
GVD and SPM effects can be used for pulse compression. In 
the case of anomalous-dispersive regime in optical fiber 
(β2<0), SPM-induced chirp is positive while the 
dispersion-induced chirp is negative. The two chirp 
contributions nearly cancel each other along the center portion 
of the Gaussian pulse when LD=LNL (N=1). Pulse shape 
adjusts itself during propagation to make such cancellation as 
complete as possible. Thus, GVD i SPM cooperate with each 
other to maintain the chirp-free pulse. This scenario 
corresponds to soliton evolution. It should be noted that 
Gaussian profile is not the fundamental soliton. Indeed, if the 
pulse shape is chosen to be hyperbolic secant, both pulse 
shape and pulse spectrum remain unchanged during 
propagation [5].  

Figs. 2-6 show the pulse evolution pictures (|U1|2) when 
the basic signal is interfered by the same shape pulse at the 
different frequency so the frequency ratio is ω1/ω2=1,2, and 
for different ratios for dispersive and nonlinear fiber lenghts 
(N) and dispersive fiber lenght and walk-off lenght (LD/LW) 
(TD represents the discrete time and ξ normalized distance). 
Dispersion parameters are taken as β21≈β22>0. 

In the case when N=1 and dispersive lenght is much 
shorter than walk-off lenght nonlinear effect is dominant and 
the pulse shape and intensity are significantly changing after 
z=5LD (Fig. 2). The pulse is noticeably distorted and the 
influence of walk-off parameter can be neglected comparing 
to nonlinear effect. Let us consider now the case when LD=LW 
where it is noticeable that the pulse is additionally distorted 
because now walk-off effect has a grater influence on the 
pulse propagation (Fig. 3). It should be noted that the 
additional distortion appeared on one side of the pulse when 
the ratio LD/LW takes positive value, but if ratio LD/LW was 
taken with the negative sign distortion would appear on the 
other side of the pulse considering the direction of pulse 
propagation. In the case when the dispersive lenght is equal to 
the nonlinear lenght (N=1) and much grater than walk-off 
lenght, it is noticeable that the pulse intensity is collapsing 
slower than in case when the walk-off parameter is negligible 
(Fig. 4). 
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Fig. 2. Pulse evolution picture for ω1/ω2=1,2, N=1 and LD<<LW  

0

1

3

5
|U |1

2

 
Fig. 3. Pulse evolution picture for ω1/ω2=1,2, N=1 and LD=LW 
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Fig 4. Pulse evolution picture for ω1/ω2=1,2, N=1 and LD>>LW 

It would be interesting now to take into the consideration 
the case when N2<<1 or when parameter N takes very small 
value (N=0,1). In this case pulse propagation is governed by 
the GVD effect and nonlinearity can be neglected. It is evident 
that in this case dispersion effect is dominant during the pulse 
propagation becouse for the different dispersion lenght LD and 
walk-off lenght LW ratios the pulse evolution picture is not 
changing significantly. Encountering the fact that in this case 
dispersive lenght LD is comparable to the fiber lenght L but 
much smaller than nonlinear lenght LNL which has the greatest 
contribution to the pulse distortion and decreasing, it is 
noticeable that the pulse intensity significantly drops after 
z=15LD and for z=30LD drops to a 23,2% of its initial value 
and it is wider about 4,5 times (Fig. 5). 

When the dispersive lenght is much longer than nonlinear 
lenght (N2>>1) that nonlinear effect is dominant in the fiber 
and the puls is rapidly losing it’s propagation characteristics 
and already at z=0,1LD it is distorted that much that it can be 
detected only as a noise. Fig. 6 shows the case when N=10 
and LD<<LW. Different dispersive lenght and walk-off lenght 
ratios show no meaningful influence on the pulse evolution 
picture so those pulse evolution pictures are not shown. 

In all those examples it is assumed that the fiber losses are 
negligible which simplifies the obtaining of the pulse 
evolution pictures. Dispersion is taken into account and it is 
present because of the wave propagation velocity dependence 
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on the wavelenght. Dispersion is limiting the transmission 
speed in optical telecommunication systems and can be 
expressed in picoseconds of pulse broadening per fiber 
kilometer and nanometer of optical source spectral width 
(ps/nm km). It should be noted that the nonlinear effects are 
present because of the small fiber cross-section that causes the 
sufficiently intense signals to produce a nonlinear interactions 
that are propagating due to a small fiber losses along the very 
long fibers. 
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Fig. 5. Pulse evolution picture for ω1/ω2=1,2 and N=0,1 
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Fig. 6. Pulse evolution for ω1/ω2=1,2, N=10 and LD<<LW. 

III. CONCLUSION 
 

This paper takes into the consideration the influence of 
fiber parameters on the pulse propagation in a nonlinear and 
dispersive fiber. It is shown that the dominant parameter in 
pulse propagation is parameter N. Its influence is the greatest 
when LD dominates comparing to LNL. The bigger the 
parameter N is, the fiber propagation characteristics are 
diminishing. The pulse maintains its shape along the fiber due 
to a cancellation of the positive and negative chirp produced 
by the mutual activities of the GVD and SPM effects. 

The physical significance of N is clearer in [3] where 
integer values of N are found to be related to the soliton order. 
The practical significance of parameter N is that the solutions 
of Schrödinger Nonlinear Equation obtained for a specific N 
value are applicable to many practical situations by using the 
scaling of equation. For example, if N=1 and T0=1ps and 
P0=1W, the calculated results apply equally well for T0=10ps 
and P0=10mW or T0=0,1ps and P0=100W [3]. As it is obvious 
from the Eq. (5), N governs relative importance of SPM and 
GVD effects on pulse propagation along the fiber. Dispersion 
dominates for N<<1 while SPM dominates for N>>1. For 
values N∼1, both SPM and GVD plays equally important role 
during the pulse propagation. 
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