
Application of the Optimal Uniform Polar Quantization 
on Complex Reflectivity Function  

 
Zoran H. Perić1 and  Jelena D. Jovković2 

 
Abstract - In compression of polar formatted images, 
one of the very first steps is to quantize the given polar 
formatted source data. The goal of this research is to 
develop a new approach for quantization in sense of 
efficient data compression and improved image quality. 
Here we introduce method of the optimal uniform polar 
quantization as an optimal technique in processing 
polar formatted SAR images and also as a potential 
concept in ultrasound diagnostics. An elementary way 
to relate the viewable SAR image to the energy returns 
from the observing ground is via complex reflectivity 
function ξξξξ that relates the incident complex phaser 
electric field of the transmitter with the reflected field. 
Another field of implementation is in quantization of 
measured ultrasound parameter called integrated 
backscatter (IBS) level that is measure of signal energy. 
Studies over recent years have analyzed only product 
polar quantization, but in this paper we will introduce 
method of optimal polar quantization that provides 
performance improvement of almost 1 dB in a sense of 
distortion reduction. 
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I. Introduction 

The motivation behind this work is to maintain high 
accuracy of phase information that is required for some 
applications such as SAR image processing and digital 
image processing in medicine, while not losing massive 
amounts of magnitude information. Both, SAR systems and 
ultrasound-based methods produce a two-dimensional array 
of complex numbers that is referred to as an image in 
rectangular format (i.e., real and imaginary components). 
These images can also be represented in polar format (i.e., 
magnitude and phase components). In all previous papers 
only product polar quantization was considered, but now 
we can present better results applying method of optimal 
uniform polar quantization (OUPQ). 
Synthetic Aperture Radar (SAR) imagery systems are 
capable of capturing high-resolution images of large earth  
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areas under all-weather conditions and at any time during 
day or night. Because of these features, many applications 
(e.g., terrain mapping and target recognition) benefit from 
SAR imagery systems. 
An inherent significant characteristic of these systems is the 
generation of large amounts of data and inducing severe 
constraints related to on board data storage capacities and 
to communication bandwidth. The fully implemented 
algorithm in this work covers performance analysis that are 
driven by aspects related to the operational efficiency such 
as the lowest distortion achieved and the quality of the 
restored image based on evaluation of statistical criteria. 
Under such constraints, the image can only be obtained by 
capturing and processing the electromagnetic reflections of 
the earth surface. 
SAR images can be represented in polar format that is 
processed by actual JPEG2000 standard [1], what makes 
this problem more interesting. Since SAR imaging 
technologies capture large areas of the earth, statistical 
properties of these images vary highly in their different 
regions. To take them into account we propose a variance 
dependent distortion metric theory (VDDMT).  
Classification of stroke causes (atherosclerotic plaque) by 
means of ultrasound is another potentional field of 
application for optimal polar quantization [2]. This goal is 
the development of a new technique for identifying 
atherosclerotic plaque type that can be implemented in 
commercial ultrasound scanners, for the purpose of better 
classifying plaques into categories and to determine stroke 
risk. The main parameter of interest is a plaque reflectivity 
"signature", measured by complex reflectivity function.  
The concept is based on the fact that the backscatter level 
from arterial blood (i.e., moving blood) is very nearly 
constant from person to person. The scattering and 
attenuating effects of the overlaying, inhomogeneous tissue 
layer over the plaque region of interest will be investigated 
for signals from both range cells. An important aspect of 
this work is the statistical analysis of the integrated 
backscatter from moving blood. 
In this paper we represent method that optimize very 
quantization of complex reflectivity function. Simple and 
complete analysis is given for optimal uniform polar 
quantizer by presenting conditions for the optimality of the 
polar quantizer and all main equations for optimal phase 
partitions and optimal number of levels. Performance 
improvement of OUPQ method over product polar 
quantization is achievable by allowing different number of 
phase levels on each magnitude level. 
 
 
 



II. Complex Reflectivity Function and Image 
Processing 

SAR images can be represented in polar format (i.e., 
magnitude and phase components) so we represent an 
optimal method for complex reflectivity function 
quantization in a phase of SAR image compression. If we 
consider known concept of SAR image formation [1], and 
if the patch of ground that is observed is small enough so 
that that its incident intensity is constant over its entirety, 
then a single parameter defines its scattering properties, 
which is called the radar cross section σ. The ensemble-
averaged intensity at the receiver from a single pulse is the 
integral of all of the differential intensities where 0σ is the 
ensemble mean of an incremental area dA. This ensemble 
mean is given a new symbol σ0, called the backscatter 
coefficient and defined as: 
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The viewable SAR image (real-valued) is derived from the 
means (σ0) of the random variables σ0  in each resolution 
cell. A more elementary way to relate the viewable SAR 
image to the energy returns from the ground is via the 
complex reflectivity function. The complex reflectivity 
function ξ relates the incident complex phaser electric field 
of the transmitter with the reflected field: 
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where now (x,y) refers to particular coordinates on a 
rectangular geographic grid or pixel locations in the final 
image. Using this relation and the fact that intensity is 
directly proportional to the squared magnitude of voltage, 
the value of σ0 can also be written as: 

{ }220 ),(),( yxEyx ξσ =    (3) 

The complex valued SAR data represents a linear mapping 
of the computed ξ. It is the value of, which should be 
approximated as accurately as possible to allow formation 
of high quality SAR image. 
Almost the same ultrasound-based approach can be 
introduced for classification of artery arteriosclerosis. 
Improved atherosclerotic plaque classification will be 
sought by determining the absolute value of the integrated 
ultrasound backscatter level, including angle dependence, 
from the interface between blood and the atherosclerotic 
lesion, by using the complex reflectivity function [2]. As the 
acoustic wavefront propagates through the inhomogeneous 
tissue, it is modified in amplitude and phase that has a large 
and unpredictable effect on the output voltage of the 
receiving transducer. The ultrasound parameter to be 
measured is called integrated backscatter (IBS) level that is 
a measure of reflected signal energy. It is envisioned that a 
set of absolute backscatter values from different locations 
inside a plaque and measured under different angles can 
form a backscatter "signature," to be used in assessing the 
structure of the plaque. 

Due to the randomness associated with the returns received 
from each incremental area, the underlying complex 
reflectivity ξ(x,y) is assumed to be a complex random 
variable, having an unknown probability distribution. Thus 
the computed complex reflectivity ξ (x,y), which is 
estimated from this received complex voltage signal after 
correlation processing is also a complex random variable. 
Since each value in the complex “image” is derived from 
linear combinations of echo data (via two dimensional 
convolution with the range and cross range reference 
functions), the central limit theorem can be invoked to 
assert the probability density function of the real and 
imaginary components of each pixel value in the complex 
image are Gaussian. 
Variance-dependent distortion metric theory (VDDMT) is 
introduced to decrease distortion in polar quantization. In 
all previous works about polar quantization [1,3-5] only 
product uniform quantization was always considered 
(N=P×L) where approximated granular distortion was 
applied as:  
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This result shows that while calculating the distortion of a 
polar quantization scheme the phase distortion should be 
weighted by 2σ2 [1] and it makes a base for using VDDMT 
in improvement of the optimality of polar compression.  
We, on the other hand, consider uniform polar quntizer of 
L magnitude levels and Pi phase reconstruction levels on a 
magnitude reconstruction level mi, 1≤ i≤ L. Polar 
quantization consists of separate but uniform magnitude 
and phase N level quantization, so that rectangular 
coordinates of the source (x,y) are transformed into the 
polar coordinates in form:  r=(x2+y2) 1/2, φ=tan-1(y/x) 
where r represents magnitude and φ is phase. 
 

III. Improvement Made by Optimal Polar 
Quantization 

 
Using polar format of images information about phase can 
be used as a useful statistical parameter, in physical sense, 
that corresponds to structural and geometric properties of 
the scattering medium. Importance of the application of the 
optimal polar quantizantion is in intention to provide 
multidimensional information via multiple frequencies. 
New wavelet-based approaches for efficient compression of 
complex images use polar format with high reconstruction 
quality.  
In order to find a truly optimal quantizer we have to 
minimize the distortion, so we proceed as follows: 
First we made a partition of the magnitude range [0,rL ] 
into magnitude rings using L decision levels ri 1≤i≤L 
(0<r1<r2<...<rL<rL+1=rmax). Magnitude reconstruction 
levels satisfy obviously (0<m1<m2<...<mL ). Then, we 
make partition of each magnitude ring into Pi phase 
subpartitions. Let φi,j and φi,j+1 be two phase decision 



levels, and let  ψi,j be j-th phase reconstruction level for the 
i-th magnitude ring, 1≤j≤Pi.  
Then:  
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Magnitude decision levels and reconstruction levels are 
given as:  

11,)1( +≤≤∆−= Liiri  

Liimi ≤≤∆−= 1,)2/1(  
At the same time, phase decision levels and reconstruction 
levels are: 
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order to use all of N regions for the quantization. In this 
paper polar quantizers are designed under additional 
constraint – that each scalar quantizer is a uniform one. 
The transformed probability density function for the 
Gaussian source is  
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Without loosing generality we assume that variance is 
σ2=1. 
Total distortion D  is combination of the granular and 
overload distortions, og DDD += , where they are  
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After integration by φ  and reordering, we have: 
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To minimize granular distortion it is necessary to find 
partial derivations of Dg(Pi). They must be equal to zero. 
We prove that the problem of minimization of the Dg(P) 
is a convex programming problem. The proof is totally 
presented in [7] and we are just applying it inhere. 

Using method of Lagrange multipliers [7] and applying it 
on Eq. (9) we are obtain the equation for optimal number of 
points:  
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for fixed N. 
Final goal is to find rmax, , Lopt, and (Piopt), 1≤i≤L for which 
Dg is minimal. Applying an asymptotical analysis we come 
to: 
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The function Dg(L) is convex of L; from 0=
∂

∂
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find an optimal solution for Lopt : 
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Finally, the optimal granular distortion for the uniform 
quantizer is:    
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Using presented method of the optimization we can find 
expression for optimal product polar quantization; starting 
from Eq. (5), we come to the result:  
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We make an assumption that for the whole picture ξ(x,y) 
is complex random variable, having Gaussian probability 
distribution with σ2=1. Firstly, picture is divided by 
method of the OUPQ (using maxr from the literature [6]) 
into N1 blocks. The whole picture is divided into L rings 
and every i-th ring consists of Pi identical blocks. 
We define radius of each block )(max ir corresponding to 
i-th ring (Pi blocks in ring):      
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Number of quantization levels for the i-th block in each 

ring is:  
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Applying method of the OUPQ on each block in the ring 
we can introduce distortion of each single block as:  
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Optimal granular distortion under product quantization is: 
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Total distortion can be defined as: 
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Gain G(i) provided by OUPQ method for each block i 
over optimal product quantization is: 
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In order to perform the improvement obtained by our 
method we’ll present an example: in Table I are given 
results for gains G(i) and average total gain Gtot for 
different N (and corresponding optimal number of levels). 
Average total gain can be defined as:     
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Result show that total gain is approximately about 0.9dB 
for OUPQ over product quantization.  
Another improvement that is achievable by optimal polar 
quantization is in a fact that vector quantizers can provide 
magnitude and phase quantization together and 
adaptively, while VDDMT can be applied on other data 
types, such as DFT coefficients. 

 
IV. Conclusion 

The design of optimal uniform polar quantization 
(OUPQ) method for distortion minimization problem is 
presented in image processing applying it on complex 
reflectivity function as possible to measure parameter, 
both in SAR systems and the ultrasound diagnostic. In 
order to improve quantization efficiency we introduced 

variance-dependent distortion metric theory (VDDMT). 
Significant performance improvement is shown through 
average total gain of about 0.9dB over common product 
quantization. 

TABLE I 
Gain G(i) for different N and average total gain Gtot 

i N1=128, 
Lopt=7 

N1=260, 
Lopt=10 

N1=512, 
Lopt=15 

1 5.65367 10.9809 8.18636 
2 1.2459 5.16583 3.44628 
3 0.693069 3.29101 1.49162 
4 0.794187 2.38799 0.785675 
5 0.717837 2.06908 0.692334 
6 0.787852 2.16667 0.757765 
7 1.83238 2.63826 0.795897 
8  3.47915 0.764876 
9  4.67662 0.702233 
10  6.25186 0.708491 
11   0.945527 
12   1.53701 
13   2.50642 
14   3.75988 
15   5.17384 
Gtot 0.9170410dB 0.930116dB 0.933998dB 
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