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Piecewise Uniform Product Two-Dimensional Laplace 
Source Quantizatoin 

 
Zoran H. Peric 1, Milan M. Grujic 2 

 
 

Abstract – In this paper  simple and complete asymptotical 
analysis is given for a piecewise uniform product two-
dimensional Laplace source quantizer (PUPTDLSQ). 
PUPTDLSQ is based on uniform product two-dimensional 
Laplace source quantizers. Product quantizer optimality 
conditions and all main equation for a number of phase divisions 
and optimal number of levels for each partition are presented. 
These systems, may have asymptotic performance arbitrarily 
close to the optimum. Futher  more, their anallysis and 
implementation can be simpler than those of optimal systems. 
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I. INTRODUCTION 
 

  
 It has been that vector quantization has much of the priority 
in speech and image coding application over scalar 
quantization. Many studies have considered the design of the 
suboptimal polar vector quantizer. These schemes should have 
provided better performances than those of  the rectangular-
coordinate-based quantizers, but with simpler implementation 
than optimal scalar quantizers. In this paper optimization of 
two-dimensional Laplace source quantization is examined and 
existence of a single minimum in dependence of the number 
of points on levels is proven . The procedure for optimizing 
decision levels, representation levels, and number of points 
per levels with a constraint on the total number of points is 
given. 
 The optimal vector quantizer are usually constrained by low 
rates. The Laplace source quantization at high rates has been 
analyzed in [1] and [2]. Here we present a quantizer similar to 
the iterative polar quantizer described in [3] and [4]. 
 The probability density function for independent identically 
distributed Laplace source with the zero mean value and the 
unity varience is given as  
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x is the source vector with element 1x  and 2x . In order to 
simplify the vector quantizer design we. introduce a 
transformation of variables. 
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The transformation is defined 
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 As a performance criterion for our discussion we consider 
the mean-squared error per dimension (MSE) which has 
experienced wide application due to its tractability and 
interpretation as quantization noise power. In the case of a 
two-dimensional source, it is shown that it gives the best 
result in the field of the implementation. Mean squared error 
is given as: 
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In this paper we consider quantizer similar to a uniform 
magnitude quantizer but we allow different number of 
quantization points at different magnitude levels. We want to 
optimaze the number of points at each level for this type of 
quantizer. 
 The obtained probability density function is: 
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 The support region for scalar quantizers has been found in 
[5-6] by minimization of the total distortion D, which is a 
combination of granular (Dg) and overload (Do) distortions, 

og DDD += .In paper [7] only granular distortion was 

examined and although, arragement of points iN  in L 
partitions was defined,  type of cells and their arrangement 
within partitions wasn’t considered. Paper [8] is an anex of 
paper [7], but the imperfection of this paper lies in using cubic 
cells for partitions and subpartitions. Due to this fact,  optimal 
arrangement of points in a partition can’t be found.  The goal 
of  this paper is to solve quantization problem in a case of 
PUPTDLSQ and to find corresponding support region.  It is 
done by analytical optimization of the granular distortion and 
numerical optimization of the total distortion. We improve the 
cell size and use more optimal cell division in each partition. 
More preciselly, our quantizer divides the input plane into L 
regions and every region is further subdivided into iL  
( Li ≤≤1 ) subregions. I-th partition in  the signal plane is 
allowed to have iM  ( Li ≤≤1 )  cells in the phase quantizer. 
We perform two-steps optimization: 1) distortion optimization 
( ( )iD ) in every partition under the constraint 
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4 iii NxML =   and 2) optimization of the total granular 
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number of points iN  on each subpartition under the 
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. We give the construction procedure 

and present the Laplace source example. 
 
 

 II   DESCRIPTION AND OPTIMIZATION 
 

We define an N-points  product quantizer Q (LxM) as a 
mapping CRQ →2:  where R2 is the real two dimensional 
space and 

{ }),(y,),,(y ,1,111 MLLN mmC ψψ ==≡ L
       (6)

 

is the output set or codebook with size NC =  . The output 

vectors, iy  are sometimes refered to as output points, or 
reproduction vectors. Associated with every N point quantizer 
is a partition of the real space R2 into N cells iR , for i=1,…,N.  

The i-th cell is given by }y)(:{ 2
ii xQRxR =∈= , which 

is inverse image of iy  under Q.  From this definition it 

follows that 2RRii =∪  and 0=∩ ji RR  for .ji ≠  A cell 
that is unbounded is called an overload  cell. Each bounded 
cell is called a granular cell. Together all of overload 
(granular) cells are called the overload region (granular 
region). The nonlinear compressor characteristic is used in  
paper [4]. Although the smooth and differentiable compressor 
characteristic is convenient for mathematical manipulations, 
there are problems of accurately implementing analog 
nonlinearities [11]. Today’s technology allows  uniform 
quantizers or piecewise linear compressor characteristics 
implementation. PUPTDLSQ can approximate smooth curves 
of the nonlinear compressor characteristics. A piecewise 
uniform quantizer range consists of several segments, each 
containing several  quantization cells and output points 
corresponding to a uniform quantizer. Different segments, 
however, may have different step-sizes. In this paper, we give 
the simplest piecewise uniform product quantization and show 
that it has approximatelly same performances as NPQ but it’s 
much simpler for application.  
 Let consider PUPTDLSQ  of L partitions, each partition 
containing iL  subpartitions. In order to minimize the total 
distortion we proceed as follows: magnitude partition decision 
levels  and reconstruction subpartition levels are given as 
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where Lr /max=∆ . 
The  distortion is a sum of granular and overload distortion 
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=+= ∑
=

o

L

i
DiDD

1
)(  

( ) ( ) }
2
1]ˆ[

2
1{ 2

1 1 1

2
,,

2
,

1,

,

1,,

,,

drdueuumr r
L

i

L

j

M

k

r

r

u

u
kjiji

i i ji

ji

kji

kji

−

= = =
∑∑∑ ∫ ∫

+ +

−+−
          (8) 

( ) }
3
22{ 

maxmax

2
2

3
,22

,, ∫∫
∞

−
∞

− +−+
r

r

L

LL

r

r
LLLL dre

M

m
dremrm L

LL

 

After integration over u and the reordering, gD  becomes 
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After  the reordering of sum and integration  over r it obtains 
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The i-th partition distortion is  
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After solving 
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we obtain  
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Optimal solution is  found applying the method of Lagrange 
multipliers. 
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yielding :  
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 The final expression for Dg is: 
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III NUMERICAL ANALYSIS AND 
RESULTS 

 
  

As an illustration of the PUPTDLSQ performance, we show 
the gain ( ) )/log(10 2

gskal
D

g DDdBG =  as a function of the 
number of  bits per sample R. 
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Fig. 1. Gain as a function of number of  bits per sample  
 

 In  order to see advantages of  PUPTDLSQ we performed 
numerical calculations of granular distortion for  L=1,2,4,8 
and rates R=(4-8) bits/sample.   
By exceeding L better performances can be achieved but 
complexity becomes greater.   
For L=8 and rates R=(4,6,8),it obtained optimal value of 

maxr , maximal value of maxG  and optimal integer values of 
(Li,Mi) are given in Table I.  
Greater gain can be obtained for greater L and R. For  
comparing  the obtained results to the  previous ones, rmax 
from  [5] is used, being  obtained for 1-D approach. The 
corresponding Dg

scal is  compared to the obtained result using 
the following gain  definition  )/log(10 opt

g
scal
g DDG = . 

The performance gain obtained by our method over the 
uniform scalar quantization for different rates can be 
presented in this manner: for R=4. G=3.43dB; for R=6,          
G= 6.05dB and for R=8, G=8.32dB. 
 
 
 
 

TABLE I  
OPTIMAL VALUES  

 
L=8 R=4, 

rmax=4.4, 
Gmax= 
3.43dB 

 

R=6, 
 rmax=6.6, 

Gmax= 
6.05dB 
 

 

R=8, 
 rmax=8.2, 

Gmax= 
8.32dB 
 

 

 i Li Mi Li Mi Li Mi 
1 5 6 16 20 63 76 
2 2 11 11 31 43 123 
3 1 9 6 32 26 125 
4   3 31 15 110 
5   2 20 9 85 
6   1 16 5 68 
7     3 48 
8     2 30 

 
 
 

IV  CONCLUSION 
 

The optimization of 2-D Laplace source uniform 
quantization is carried out and the existence of a single 
minimum depending on the number of points on various 
levels is proven. Simple expression for granular distortion in 
closed form is obtained. The results obtained by the 
asymptotic analysis demonstrate the significant performance 
gain over the uniform scalar quantization (even 8.32 dB for 
R=8). The obtained gain using rectangule cells can even be 
compared to boundary gain in highdimensional space. That 
automatically provides lower complexity and easier 
realization. 
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