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Analysis of Full Availability Loss System when  
the Input Stream is Peaked or Smooth 
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Abstract: This paper presents a generalized input Poisson 

stream, peaked or smooth. A teletraffic model for a full availabil-
ity loss system with a generalized input stream is proposed. The 
idea is based on the analytic continuation of the Poisson distribu-
tion and the Erlang-B formula. We use techniques based on birth 
and death process and state-dependent arrival rates. 

Keywords: Queueing theory, Performance evaluation, Tele-
traffic models. 

I.  INTRODUCTION 

The Poisson process is one of the simplest and most inter-
esting stochastic processes [6,9]. One of the properties is that 
the mean and the variance are equal.  These features simplify 
analysis, but introduce inaccuracy. 

The traffic flows inside a network are not Poissonion in 
general [1]. For many real teletraffic systems the mean num-
ber of events in an interval is not equal to the variance.  The 
offered streams are said to be peaked or smooth according to 
whether the variance is bigger or smaller than the mean value, 
respectively. 

The Equivalent random theory (ERT) model is used to 
analyze overflow systems [5]. The Bernouilli-Poisson-Pascal 
(BPP) method is used to approximate the main congestion 
functions associated with peaked and smooth traffic in lost-
call-cleared systems [3]. The BPP model represents peaked 
and smooth traffic by two separate models, and cannot repre-
sents arbitrary smooth traffic. 

Network analysis really requires a technique that can rep-
resent any kind of traffic, peaked or smooth, within the same 
model [2,4]. All the methods are designed for a particular type 
of traffic, peaked or smooth, or, if they apply to both, do so 
using different models for different ranges of peakedness. The 
present method here meets the above requirements. 

In this paper peaked and smooth input streams are defined. 
They will be called a generalized Poisson process.  A calcula-
tion method for the time, call and traffic congestion probabili-
ties and computation of the permissible offered traffic in a full 
availability loss system with a generalized Poisson input 
stream is presented. 
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II. GENERALIZED POISSON PROCESS 
The Poisson process is a pure birth process with an arrival 

rate λ independent of the system state.  The stationary prob-
ability of having i customers in the system at time t are : 
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Two more parameters, peakedness factor p and number of 
sources s, is introduced for the generalized Poisson process.  
Processes are said to be peaked, regular or smooth according 
to whether p >1, p =1 or p <1, respectively. 

The state probabilities Pi (t) in the case of a generalized 
Poisson process are : 
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 The mean value (the average number of arrivals in an 
interval of length t) is : 
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The variance of the number of arrivals in an interval of 
length t is : 
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when p = 1, M(t) = λ t  and V(t) = λ t  i.e. it is a regular Pois-
son process. 

III. LOSS SYSTEM WITH N-SERVERS 
Let us consider a full availability group of size n, number 

of sources  s > n  and a generalized Poisson input stream. This 
is a birth and death process and we can use the general solu-
tion as given in [7]: 
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The blocked calls cleared system may be described by se-
lecting the birth-death coefficient as follows : 
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The arrival rate is state-dependent and both arrival and 
service rate depends from the peakedness factor p. This loss 
system is always ergodic. The finite state-transition diagram is 
shown in Figure 1.  
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Fig. 1. 

 
Applying these coefficients to the general solution of the 

birth and death process and using traffic intensity a = λ/µ we 
obtain the generalize Erlang distribution 
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When the peakedness factor p = 1, we get the Erlang dis-
tribution. 

The offered traffic is calculated by means of the average 
arrival rate and the mean holding time 
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The carried traffic is the expectation of the number of calls 
existing in the steady state 
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Assume that the number of the servers is equal to the num-
ber of the sources  n = s. In this case the whole offered traffic 
is carried and it is called the intended traffic load. The in-
tended traffic is the equilibrium number of busy servers 
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The variance of the intended traffic is 
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The peakedness of the intended traffic is the variance to 
mean ratio 
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IV. CONGESTION PROBABILITY 
The time congestion probability Bt describes the fraction 

of time that all n servers are busy  

 nt PnpaB =),,(  (13) 

The call congestion probability Bc is the ratio of the num-
ber of calls lost to the number of calls offered, during a cer-
tain period in statistical equilibrium 
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The traffic congestion probability Ba is the ratio of traffic 
lost and intended traffic 
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V. CALCULATION OF THE LOSS PROBABILITY 
The traffic intensity a is not equal to the intended traffic in 

a case of a generalized Erlang process because, we calculate 
the power of the Erlang unsymmetrical distribution.  That is 
why we have to calculate the intended traffic Ai and the 
peakedness z when defining the traffic intensity a and peaked-
ness  factor p. 

From the practical point of view we first define the in-
tended traffic Ai and the peakedness z and after that calculate 
the traffic intensity a and peakedness  factor p. 

A fundamental question about the system defined by Eqs. 
(7), (10) and (12) is whether there exist solutions a, p for an 
arbitrary Ai, z. Although no formal proof seems to exist, this 
seems to be the case and the solution seems to be unique. 

We can find solutions of the above system with the iterat-
ing method of consecutive replacements.  This method is not 
applicable when the intended traffic per server  Ai /n < 0.25 
erl  end  z > 1  because the relative difference between the 
traffic intensity a and Ai  is bigger. In other words it is diffi-
cult to find a and p when the intended traffic is small and 
peaked. 

The time congestion obeys the interesting recurrence 
which is a generalization of well-known recurrence for the 
Erlang-B function 
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where the initial value Bt (a,p,0) =1. 
In this paper is used another method [8], which is conven-

ient for numerical computation. The time congestion probabil-
ity is exactly expressed as a sum  
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where the terms Ti are obtained using the following recur-
rence with To =1 
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The call congestion probability is exactly expressed as a 
sum 

 ∑
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where the terms Uk are obtained using the following recur-
rence 
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with Uo =1. 
 

VI.  CALCULATION OF THE TRAFFIC INTENSITY 
Computation of the permissible offered traffic for a given 

number of servers, sources, peakedness and given value of 
loss probability is frequently required in the practical design 
of communication systems. 

We use the Newton's iterative method for computation of 
a simple zero of nonlinear equation 

 0)( =Ψ a  (21) 

An appropriate function is 
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where βt is given time congestion probability. 
The first derivative of this function with respect to  a  is 
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The iterations are defined by 
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The starting value is 
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VII. NUMERICAL RESULTS 
In this section we give numerical results obtain by a Pascal 

program on an IBM PC. The described methods were tested 
on a computer over a wide range of arguments. 

Figure 2 shows the generalized Poisson distribution where 
the intended traffic is Ai = 10 erl, the number of the sources s 
= 100 and the peakedness z is change from 0.25 to 4.  It will 
be seen that when the peakedness z increase the probability 
distribution becomes broad about the mean. 
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Fig. 2 
 

Figure 3 illustrates the time congestion probabilities in a 
full availability loss system with 20 servers and 100 sources 
as functions of the intended traffic per server in a generalized 
input Poisson stream.  The case with z =1 and s = ∞ corre-
sponds to the Erlang-B formula.  The peakedness has the 
same value as in Fig. 2. 
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Fig. 3 

 
It will be seen that when the intended traffic per server is 

from 0.8 to 0.9 erl the peakedness influence of the time con-
gestion probability is negligibly. 

When the intended traffic per server is less than 0.8 erl the 
peaked stream increase and the smooth stream decrease the 
time congestion probability.  When the intended traffic per 
server is greater then 0.9 erl the time congestion probability is 
less in the peaked stream case than in the smooth one. 

Figure 4 shows the time, call and traffic congestion prob-
abilities in a full availability loss system with 20 servers and 
100 sources as functions of the intended traffic per server in a 
generalized input Poisson stream.  The peakedness  z  has the 
value 0.5, 1 end 2. 
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Fig. 4 
 

Figure 5 is the traffic load curve. It will be seen that the 
smooth input stream increase and peaked input stream de-
crease the permissible offered traffic. 
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Fig. 5 
 

There are differences between the present results and the 
congestion functions calculated by the Equivalent random 
theory (ERT) end by the Bernoulli-Poisson-Pascal (BPP) 
methods.  The ERT overflow model uses an equivalent traffic 
as a generator of overflow traffic which is a part of the Pois-
son distribution. The BPP model is a state dependent arrival 
process with linear arrival rates. 

Wallstrom [10] has derived the Binominal moments of the 
overflow traffic from a finite trunk group, when the offered 
traffic process is an arbitrary state-dependent Poisson process. 
This is applicable to the proposed model. 

In the following we compare the teletraffic model for a 
full availability loss system when the input stream is a gener-
alized Poisson process with the ERT and BPP models. 

VIII. CONCLUSIONS 
In this paper a generalized Poisson process is defined. A 

basic model for a full availability loss system in a generalized 
input Poisson stream is introduced and explained. 

The proposed method provides a unified framework to 
model peaked and smooth traffic.  Numerical results and sub-
sequent experience has shown that this method is accurate and 
useful in both analyses and simulations of traffic systems. 

The importance of a full availability loss system in a case 
of a generalized Poisson input stream comes from its ability to 
describe behavior that is to be found in more complex real 
queueing systems. It is the case in a general traffic system, 
which is an important feature in designing telecommunication 
systems. 

The advantages of simplicity and uniformity in represent-
ing both peaked and smooth traffics make this model attrac-
tive for modelling traffic in network analysis and synthesis. 

With the proposed model it is simple to compute the dis-
tribution parameters, and it has excellent accuracy from a nu-
merical point of view. 

In conclusion, we believe that the presented formulae will 
be useful in practice. 
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