

 599

Interprocessor Communinication Monitoring in DKTS
30 Switching System

Branko Kolašinović1, Mirko Markov1, Milan Jovanović1

Abstract - The DKTS 30 interprocessor communication
monitoring software is developed in order to provide two basic
components: periodical error polling functions and
interprocessor communication errors reporting. Similar to the
SNMP, this software has a vast ability to collect the DKTS 30
network status information and determine the network health.
Furthermore, it is very effective in undertaking appropriate
actions in case of irregular situations.

Keywords – switching system, interprocessor communication,
network management, SNMP.

I. INTRODUCTION
The DKTS 30 public digital telephone exchange is the

newest product of the well known proved DKTS series of
digital telephone switching systems. Although it has been
successfully commercially exploited for more then a year, it is
still under development in order to achieve better quality, to
provide new services and to reduce the production price. Like
other modern telephone switching systems it is based on a
large number of off-the-shelf microprocessors and
microcontrollers, that frequently need to communicate with
each other. Therefore, it was crucial to provide a reliable high-
speed, high-throughput interprocessor communication
mechanism, so the need for an efficient interprocessor
communication monitoring arises.

Although different protocol stacks supporting
interprocessor communication in distributed real-time systems
exist, it was decided to develop a proprietary one [1]. The
main reasons were: the complexity of DKTS30 system
architecture and several working modes of its units impose
some specific solutions, compatibility with previous
generation (DKTS20) of peripheral units, and redundancy of
critical resources in order to increase the system reliability.
The application software is unaware of distributed nature of
hardware resources and does not care whether it
communicates with DKTS20 or DKTS30 units.

The aforementioned particularities of the interprocessor
communication mechanism implicate a specific interprocessor
communication monitoring solution. The DKTS 30
interprocessor communication monitoring subsystem is
realized to provide:

1. a hardware resource monitoring,
2. a hardware-level error detection,
3. a protocol-level error detection,
4. a prompt reaction to the detected malfunction,
5. a logging of fault information into an appropriate file.
The interprocessor communication monitoring software is

designed in such a way, that it works together and interacts
with the rest of the software in the system, conforming to the
global concept of the development of the DKTS 30 software
[2].

II. TOPOLOGY OF THE DKTS 30 SYSTEM
The DKTS 30 system architecture is given in Figure 1. It

consists of central blocks, peripheral blocks, and terminals.
The central blocks are: administration (ADM), switching
(KOM), synchronization (OSC), source of speech information
(GGI) and USP (Universal Signaling Processor). In order to
increase the reliability of the system, the central blocks are
duplicated. The administration unit is an industrial PC, while
other central blocks are originally developed boards based on
the Motorola 68360 family of processors. The central blocks
are connected via a local Ethernet, that is doubled, too. The
peripheral blocks (PB) are subscriber blocks and
interexchange trunks.

The USP unit consists of a UCP (Universal Communication
Processor) unit and a signaling processor, connected via
HDLC link. The UCP unit distributes the messages among the
central and peripheral blocks. Previous generation (DKTS20)
of peripheral blocks are connected to the UCP blocks via
serial HDLC links. One pair of UCP units works in the load-
sharing mode for a group of six peripheral units. Each of those
six peripheral units is connected to both UCP units by its own
separate link. The terminals can be local or remote. Local
terminals are connected to the administration blocks via a
separate local Ethernet.

Therefore, two types of interconnections exist in the
system: Ethernet networks and HDLC links. Although, it is
not a custom to use Ethernet in real-time systems, it was
shown that Ethernet meets expected traffic intensity.
Moreover, Ethernet hardware and supporting software are
common, available, and cheap.

III. THE ORGANIZATION OF THE SOFTWARE
The DKTS 30 software is based on object-oriented

principles. It is developed using UML notation [3], and
implemented in C++ programming language. The software is
organized as a collection of server objects that are distributed
among the processors. The main abstractions of the system are
modeled by server objects. Each server object has a unique
identification, known to all processors in the system. This
identification consists of a processor identifier (the logical
address of a processor), a class identifier, and an object
identifier. The physical address of a processor is its inherent
fixed attribute, while the logical address depends on its
working mode.

Server objects that model the abstractions in the system are
implemented as finite state machines (FSM). This is a
common approach in design of real-time systems. Each FSM
is designed according to the Bridge template [4], and consists
of an interface and an implementation object. Interface and
implementation objects may reside on different processors,
and the only connection between them is their unique
identifier of the object.

1 PUPIN TELECOM DKTS, Batajnički put 23, Beograd,
Yugoslavia. E-mail: {brankok, mmarkov, milanj}@ dkts.co.yu

 600

USP USP UCP

KOM2KOM1
ADM1 ADM2

Terminal

Terminal

Ethernet1
Ethernet2

Ethernet3

PB
1

6

HDLCHDLC

PB
1

6

HDLCHDLC

OSC 1 OSC 2

NO7

USP

USPGGI 1 GGI 2

Figure 1: The DKTS 30 system architecture

IV. INTERPROCESSOR COMMUNICATION
The role of the interprocessor communication software is to

provide a reliable high-speed, high-throughput message
passing mechanism. This mechanism is used to connect server
objects that can be placed on the same processor or on
different processors. In the case when the switching system
contains both old (DKTS20) peripheral units and new
(DKTS30) units, neither server objects on new units, nor
software on old units, are aware with whom they
communicate. It is obvious that all differences in used
message formats, as well as differences in applied protocols,
have to be solved in the interprocessor communication
software.

The interprocessor communication is connectionless. A
recipient must send back an acknowledgement message to the
sender upon data receiving. If an original message comes
from an old peripheral unit, the acknowledgement message
must use the path that has been used by the original message.
An alternative path (if any) is chosen in the case of a
retransmission.

The particular protocol stack that implements the desired
interprocessor communication model is designed having in
mind the aforementioned demands, as well as ISO Open
Systems Interconnect (OSI) specification. The major
functionality of the interprocessor communication software is
divided into logical parts representing layers of the protocol
stack. Each layer uses the layer immediately below and
provides a service to the layer immediately above.

The application layer provides a conversion from a logical
address of a destination processor into a collection of physical
addresses and sends a message to all obtained processors. The
transport layer converts a physical address of a destination
processor into a collection of IP addresses of the destination,
sends a message to one of the provided addresses, and cares
about acknowledgement messages and retransmissions. The
network layer selects an available internode and converts
messages and protocols from old into new one and vice versa.
The data link layer performs communication with adjacent
nodes. In the Ethernet case, the UDP protocol from TCP/IP
protocol stack is used. The physical layer is responsible for the
electrical and mechanical connections.

V. INTERPROCESSOR COMMUNICATION MONITORING
There is a number of available software packages on the

market today, supporting some form of communication
protocol monitoring in TCP/IP networks. Most of them utilize
the communication protocol known as SNMP (Simple
Network Management Protocol), described in a long and
growing list of RFCs, starting with the standard [5].

This network protocol is based on a client/server
architecture. The server program (SNMP Agent) resides on a
remote network device. The client program (SNMP Manager)
resides on the network server. The Manager sends queries to
the Agent. Server software replies to these queries, and sends
information showing the current state of the device that the
Agent resides on. The database that is controlled and updated
by an Agent is called MIB (Management Information Base)
and represents the standardized set of network statistical and
control values.

Requests that a Manager sends to an Agent have an SNMP
variable identifier (often called a MIB object, or a MIB
variable), and a command that specifies whether to read a
value (get request messages), or to set a value (set request
messages). Get request messages acquire the information on
the state of network devices. Set request messages provide the
means of configuring and controlling network devices. At last,
the standard provides trap messages allowing the device to
inform the Manager about fault conditions.

The basic components of network control, provided by
SNMP, are:

1. A periodic collecting of information on availability of
transport medium, i.e. network nodes and links. This is
achieved by polling the values of certain MIB objects and
alarming, if the values of monitored objects exceed the
maximal allowed range.

2. A periodic collecting of information of the state and
trends inside the network, which allows the monitoring of
network traffic, and congestion control.

3. An ability to respond to the alarms that are sent
asynchronously from the network devices. This provides the
prompt reaction on malfunctions reported by network devices
at the moment of their occurrence.

4. A certain level of network management, i.e. possibility of
executing set requests.

 601

VI. "SNMP LIKE" SOLUTION IN DKTS 30 SYSTEM
Since the interprocessor communication was developed to

be a proprietary one, it was natural to deal in the same way
with its monitoring. The implemented solution of the
interprocessor communication monitoring is very much like
SNMP. Actually, part of it, depending on a used operating
system, is based on the standard SNMP. The solution supports
all information like SNMP, often extended by some others,
but does not always provide messages prescribed by the
standard. Also, the Manager is not a separate centralized
application working on the administration unit, but is rather
divided and its functions are distributed among the processors.

Functions of the interprocessor communication monitoring
are divided into few classes – FSMs. All these classes are
designed using the design pattern Singleton [4]. The
LinkErrorMonitor works like an SNMP Agent. An object of
this class resides on all originally developed boards and it is
responsible for monitoring of hardware resources. The
TestNIManager could test a state of all network interfaces by
polling transport layer of a particular processor. It resides on
administration blocks only. All other services of the
monitoring, including a logging of fault information into an
appropriate file, are provided by LinkErrorCollector. The
implementation of this object resides on administration blocks
only, while the interfaces are distributed among all processors.
The ProtocolStatistic is responsible for protocol statistic
collecting. The significant role is performed by the
PollingManager. The implementation of this class resides on
all processors and, among other functions, triggers execution
of periodic polling activities.

The detection of communication protocol faults is achieved
in three ways:
• by periodic collection of information about transmission

media availability,
• by communication protocol reports about failed transfers,
• by periodic polling of network interfaces.

Also, a collecting of protocol statistic can detect some
interprocessor communication irregularities.

VII. PERIODIC MONITORING
The collection of information about transmission media

availability on all originally developed boards is done
periodically. The UML sequence diagram of this activity is
given in Figure 2. The LinkErrorMonitor resides on all
considered processors and it is responsible for monitoring of
hardware resources. The PollingManager object addresses the
LinkErrorMonitor abstraction for assessment of link states.
The LinkErrorMonitor inspects all network interfaces
(Ethernet ports and HDLC links) of its own module. In a case
it detects certain malfunctions, it notifies LinkErrorCollector
abstraction by calling functions supported by
LinkErrorCollector’s interface on the particular module. The
notification messages are sent to the master administrative
processor, where the implementation of LinkErrorCollector
will be able to take appropriate actions.

The LinkErrorMonitor class achieves its functionality by
iterating through MIB base and checking the values of certain
MIB objects. This is implemented using the services of a host
real-time operating system. Currently, it is commercially

available pSOS [6], while porting to open source RTEMS [7]
is near the end. The pSOS operating system, due to its
network manager pNA+, supports MIB base for network
monitoring, according to MIB-II standard. MIB objects are
accessed from the application using the pNA+ ioctl() system
call. Since the values of MIB objects are monitored only, the
message sent from the application software is of get request
type. The values of MIB objects are stored until the next
polling and compared with the defined thresholds inside the
application. If the values exceed their thresholds, the
LinkErrorCollector is alarmed.

ADM - Instance :
LinkErrorCollecor

UCP - Instance :
PollingManager

UCP - Instance :
LinkErrorMonitor

inspectLinks()

hdlcFailure()

Figure 2. Sequence diagram - monitoring network resources

VIII. FAILED MESSAGE TRANSFER REPORTS
The errors inside the implemented message passing

mechanism are caught through the whole protocol stack.
When an error is detected, the LinkErrorCollector abstraction
is notified. The UML sequence diagram of an example of the
transport layer fault report is given in Figure 3.

UCP - Instance :
TransportLayer

ADM - Instance :
TestNIManager

ADM - Instance :
LinkErrorCollecor

checkNI()

deadNI()

protocolNetInterfaceFailure()

Figure 3. Sequence diagram – failed message transfer report
The task of the transport layer in a reception is to identify

an incoming message. There can be three cases. If the
incoming message is an original one, the reply to the source
node is sent. If a positive reply is received, no action is taken.
If a negative reply is received, or the timeout interval is
exceeded, the message must be retransmitted. It is possible
that the certain irregular condition arise. In that case the
LinkErrorCollector is alarmed. The message to the
LinkErrorCollector will be sent, if the positive or negative
reply arrives, and there is no corresponding message in a sent
messages buffer, if the message of unknown type arrives, if
the timeout for the reception of the reply is reached, or if the
number of retransmissions reached the maximum value. Each
of these irregular events corresponds to the certain error code.

 602

The LinkErrorCollector abstraction requires the
TestNIManager to check the suspicious network interface. In
the case the network interface is determined to be dead,
appropriate actions are performed.

IX. NETWORK INTERFACES POLLING
Very powerfull interprocessor communication monitoring

mechanism is a periodic polling of network interfaces. This
task is done on the master administration only. The UML
sequence diagram of this mechanism is given in Figure 4. The
PollingManager object orders the TestNIManager abstraction
to test a state of all or only dead network interfaces. This is
done by polling transport layer of a particular processor.
Because the transport layer is the part of the running
application, this test verifies a particular network interface, as
well as the fact that our application still runs on the particular
processor. This is the way to discover that a network interface
has become alive.

Instance :
PollingManager

Instance :
TestNIManager

Instance :
LinkErrorCollecor

checkAllNI()

liveNI(11.64)

deadNI(12.3)

Figure 4. Sequence diagram – network interfaces polling

X. ACTIONS BASED ON FAULT REPORTS
The messages about faults arrive to the administrative unit,

i.e. to the implementation object of the LinkErrorCollector
abstraction, so it is possible to gather and log information,
such as: code of reported error, source/destination processor
of the failed message, and the source/destination network
interface of that message. Upon reception of a message, this
object can ignore the message, or declare that the
corresponding processor/network interface is dead or
suspicious if there are certain irregularities, but not in such
degree to render certain processor or network interface
unusable. In that case it requires the TestNIManager to check
suspicious network interface. The TestNIManager polls the
suspicious network interface predefined number of times, and
if there is no response, the corresponding object will be
declared dead.

The final goal of the interprocessor communication
monitoring is to assure the successful operation of the
interprocessor communication. Because the local images (the
database that resides on each processor and keeps the states of
physical processors, their operating modes and the states of
network interfaces) are of crucial importance for the efficient

and reliable interprocessor communication, it is necessary to
provide the fast update of the local images on all processors.
Therefore, a message about the failure or recovery of a certain
processor or a network interface is broadcasted to all
processors right after particular detection in order to update
the local image database.

XI. PROTOCOL STATISTIC
Statistic about all sucessfully/unsucessfully sent messages

is collected on all processors. These counters are reset every
day at midnight. The values are available on a request from
terminal. Some interprocessor communication irregularities
can be detected by analyzing gathered statistic

XII. CONCLUSION
The realized interprocessor communication monitoring

software, as an integral part of the complex DKTS 30
software, is developed in order to provide a reliable, efficient
and fast method of interprocessor communication error
detection, so that the adequate actions can provide undisturbed
operation of the communication protocol. The significant
complexity of the DKTS 30 system, and global concepts of
DKTS 30 software development dictated the need for the
proprietary solution. This solution is very much like SNMP,
the most ubiquitous network control protocol, and provides
the same functionality concerning the periodic polling of
information about the transmission media availability, and the
detection of trends inside the network. The communication
protocol monitoring software also provides the error detection
inside the communication protocol, which would be
impossible with commercial software solutions, because there
would be no simple interface for the programmer. In addition,
this software provides the possibility of taking appropriate
correcting actions, significantly increasing the reliability of
the interprocessor communication even in challenging
situations.

The described solution definitely fulfills DKTS 30 phase
one development requirements. However, a remote
supervising of the DKTS 30, especially the ability to be
supervised with other public telephone exchange from one
place, dictates full support of SNMP standard. This would not
be a problem due to adopted foundations of the realized
solution.

XIII. REFERENCES
[1] D. Vujadinović, S. Spasojević, J. Mrdalj, M. Jovanović, V.

Hiršl, "Interprocessor communication software in DKTS30
switching system," TELFOR ’98, Conference Proceedings,
Beograd, Yugoslavia, 1998.

[2] DKTS30 project specification, Pupin TELECOM DKTS,
Beograd, Yugoslavia, 1997.

[3] UML Semantics, Rational Software Corporation, USA, 1997.
[4] E. Gamma, R. Helm, R. Johnson, J. Vilsides, Design Patterns –

Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1994.

[5] RTEMS C User’s Guide, Edition 1, for RTEMS 4.5.0, May
2000.

[6] pSOS System Concepts – Network Programming, Integrated
Systems Inc., USA, 1997.

[7] J.D. Case, M. Fedor, M.L. Schoffstall, C. Davin, "A Simple
Network Management Protocol (SNMP)," RFC 1157, 1990.

	Back to PO2 session
	Back to main menu

