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Algorithm for the Synchronization in Radio Communica-
tion Systems with Coherent Discontinuous Variation of 

the Working Frequency 
Antonio V. Andonov1 and Vassil M. Kadrev2  

Abstract1 – An algorithm for the synchronization in radio 
communication systems with discontinuous variation of the 
working frequency is proposed in the paper. 

Keyword – Spread spectrum communication systems  

The problem of the communication system synchronization 
lies in the combination in the time of periodic processes, de-
scribing the operation of the transmitter and the receiver. Even 
the precise knowledge of the time of the transmitter operation 
initiation and the perfect stabilization of the time standard is 
not a complete solution of the synchronization problem. This 
is especially valid for the mobile radio communication, where 
as a result of the change in the distance between the mobile 
objects arises indefiniteness in the delay of the received sig-
nals. In spite of it some authors [1,2] consider that in the fu-
ture broad band systems with discontinuous variation of the 
carrier frequency will be used a combination of the method of 
autonomous synchronization in connection with the creation 
of compact highly stable frequency standards and methods of 
prognosticating of the distance between the transmitter and 
the receiver by additional means, including special computing 
facilities and providing the possibility for obtaining suffi-
ciently precise information for the purpose of compensating 
the delay. With a view to this formulation, one of the purposes 
of this paper is to propose an algorithm for autonomous syn-
chronization with prognosticating of random delay fluctua-
tions. 

The most universal approach to the problem of the synthe-
sis of optimal algorithms for receiving is based on the theory 
of Markov for the nonlinear filtration. With a view to the de-
lay compensation τ(t) in the signal propagation medium s(t), it 
should be emitted with advance in the, or it should be of the 
kind:  

Sx(t) = s[t+x(t)].    
When the delay τ (t) is available, the desired signal is de-

scribed with the expression: 
Sx[t-τ (t)] = S{t-τ (t)+x[t-τ (t)]}  (1) 

The problem, the solution of which is the subject of this pa-
per, is to determine the value of x(t), at which is obtained the 
maximum root-mean-square of the displacement ε(t) at the 
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time of receiving the signal at the receiver input with random 
delay τ(t) available, or 

ε(t) = τ (t)-x[t-τ (t)].   (2) 
For the determination of x(t) can be used the total current 

information about the random delay, contained in the realized 
w(t) during the time interval [0,t] at the receiver input. This 
oscillation is a mixture of the desired signal and the noise:  

w(t) = Sx[t-τ (t)]+n(t).   (3) 
The signal emitted by the transmitter in a random time t0 

enters the receiver’s input through a channel with random 
delay at the time t1, so that the evident equation: 

T0 = t1 - τ (t).    (4) 
is justified. 

The set problem could be reduced to the determination of 
the advance x(t), providing minimum root-mean-square of the 
displacement ε(t1) of the signal, received at the time t1, based 
on the observation of the realization w(t) to the time of emit-
ting the w0 = {w(t), 0<t<t0}. 

As well known, the optimum root-mean-square estimate co-
incides with the arbitrary mathematical expectation:  

X(t0) = M{τ (t1)w0} = ∫
∞

∞

τ 1P1(τt0) dτ; (5) 

P1(τt0) = P{τ (t1)w0}.    
In order to avoid the process consideration at random times, 

it is reasonable to introduce the following process:  
τ 1(t0) = τ (t1).   (6) 

From (4) follows that  
τ 1(t0) = τ [t0  + τ (t1)] = τ [t0 + τ1 (t0)]. (7) 

In this case for the probability density P1(τ t) could be said 
that it is the current presumptive density of the process prob-
abilities τ 1(t);  

P1(τ t)  = P{τ (t1)w0} = P(τ1(t0)w0}.   
The physical meaning of τ 1(t) is the delay of the signal 

emitted at the time t0. 
From (7) can be derived equation, determining the relation 

between P1(τ ,t) and  P(τ,lt) = P(τ(t+l)w0}, or the a posteriori 
probability density of the random delay at the fixed time τ 
(t+l). If l is regarded as a random value with a probability 
density P(l), and τ (t+l) as a function of this value, than based 
on (6) the following is valid:  

P{τ1(t) = τ w0} = ∫
∞

∞−

=+ )({ ltP τ τ w0}P(l)dl (8) 

From (7) follows that l=τ1(t), or: 
P(l) = P{τ1(t)} = l w)} = P{[l  t}  
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In this way a homogeneous integral equation of Fredholm 
of second type, providing the possibility for the determination 
of P1(τ t) at assigned probability density P{τ,t). 

P1(τ t) = ∫
∞

∞−

 P(τ; l t) P1 (l  t) dl. (9) 

Equation (9) relates the probability characteristics of the 
τ1(t) process to the characteristics of the τ(t) process. The al-
gorithm of calculating of P(τ; l t) results from theory of the 
optimum nonlinear filtration. The random delay can accept 
non negative values, or τ1(t)>0, P1(τ t)=0 for τ<0. That is 
why in (9) only P(τ; l t) for l>0 is used, or, only the extrapo-
lated probability density.  

In practice always can be assumed that τ (t) is a component 
of a Markov process λ(t) = {τ (t),β(t)}, and τ (t) is separated 
in an open type. 

If S(t) is a synchrosignal, emitted by the monitoring station 
and the delay is the only random parameter of the Sx(t) signal, 
then the assignment of τ defines completely the signal:  

Sx[t-τ (t)] = S{t-τ (t)+x[t-τ (t)]}   
The realization of w0

t-τ (t) in formula (1) is known, deter-
mined by previous observations.  
So, the determination of the a posteriori probability density of 
the probabilities P(τ; l t), based on the observation wt

0, is a 
problem of the Markov theory for an optimum linear filtra-
tion, that can be solved. The probability density can be deter-
mined by the equation  

l
lItP

∂
∂ );(λ

 = L{ P(τ; l t)},  (10) 

where L(.) is the presumptive operator of Focker – Plank - 
Kolmogorov [2].  

The initial condition in this equation is determined by the 
expression: 

P(λ; v=.0  t ) = P(t,λ),   (11) 
where P(t,λ) . P{λ(t)  wt

0} is the current a posteriori prob-
ability density of the λ(t) process at the observation уш0, de-
termined by the equation for the filtration equation of Stra-
tonovich [2]. In this case it is of the following kind: 

( , )P T
t
λ∂

∂
  = L{P(t,λ)} + [Fx(t,τ) – Fx(t)] P(t,λ),  

where 

Fx(t,τ) = 
N
2

 {w(t) Sx(t-τ) – ½ Sx
0(t-τ)};   

Fx(t) = ∫  Fx(t,τ) P(t,λ)dλ   

For the purpose of simplifying equations (10), (11) and 
forming the extrapolated probability density P(τ; l t) it is rea-
sonable to apply the well known method of the Gaus ap-
proximation.  
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